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also conduct sensitivity analysis of the strength of empirical conclusions to model selec-
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profitability from an estimated mailing strategy in a marketing campaign. We also

illustrate the procedure’s performance through simulation experiments.
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1. Introduction

Large, complex data sets, often described by the moniker big, have opened new avenues for

empirical work in economics and the social sciences. These data can be extremely rich in

the sense that they contain information on a large number of variables for each observation.

Such high-dimensional settings1 offer many opportunities for empirical researchers to analyze

complex phenomena but pose practical and theoretical problems because of the presence of

a large number of explanatory variables.

One of the challenges created by data with many available covariates is the specification of

the statistical model. With many available predictors, it is easy to specify a highly-complex

model with many parameters to be estimated. Unfortunately, a statistical model with too

many parameters is likely to overfit, resulting in both poor out-of-sample predictive perfor-

mance and poor statistical inference about functionals that depend on the true parameters

of the model. For example, informative inference about parameters in a linear regression

model is impossible if the number of explanatory variables is larger than the sample size if

one is unwilling to impose additional model structure.

Regularization - constraining the estimated model to avoid perfectly fitting the sample

data - is therefore required for building a useful high-dimensional model. Ad hoc regulariza-

tion by specifying a low-dimensional parametric model is commonly employed in empirical

applications. There are also a variety of formal regularization devices that provably control

over-fitting and produce high-quality forecasts under sensible conditions. However, regular-

ization may also lead to regularization bias and underfitting - fitting a model which misses

important features of the phenomenon under study - which also results in poor predictive

performance and invalid inference about population objects of interest. For a systematic

overview of high-dimensional methods and related issues, see [34].

A popular regularizing structure in the statistics and econometrics literature is sparsity ;

see, for a general reference, [16]. Sparsity is a general term for an assumption which states

that the true model depends only on a small subset of the unknown parameters. An example

is the sparse linear regression model which is characterized by having many covariates, most

of which have zero coefficients. A sparse estimator is an estimator which returns a model

in which only a small number of estimated parameters are nonzero. There are a variety of

sensible sparse estimators in the literature. Leading examples are `1-penalized methods such

as the lasso estimator of [32] and [47].2 Many `1-penalized methods and related methods

have been shown to have good estimation properties with i.i.d. data even when perfect

variable selection is not feasible; see, e.g., [19], [42], [14], [35], and the references therein.

Results for `1 methods beyond simple i.i.d. data structures3 also suggest that this type of

regularization has fairly general applicability. Lasso is also useful as an input into a post-

model selection estimator where statistical estimation is performed using a model selected

through some statistical device; examples include [10], [9], [13], [11], [12]. This paper studies

1Formally, a high-dimensional setting is an asymptotic frame for a sequence of statistical models where

the number of unknown parameters grows at least as quickly as the sample size.
2Alternatives to the lasso estimator with similar properties include the Dantzig selector (see [19]), forward

stepwise regression (see [54], [57], [48], [28], [37] ), SCAD (see [30]), and many others.
3See, for instance, [9] and [11].
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constructing inferential quantities, such as confidence intervals, for functionals of unknown

model parameters in high-dimensional settings under sparsity assumptions.

The use of regularization is problematic for statistical inference and construction of con-

fidence sets. Confidence intervals for parameters in models which are estimated with a

regularized estimator can have extremely distorted coverage probabilities if the regulariza-

tion is not explicitly taken into account. Heuristically, the problem with inference arises

because the regularized model may not be the true model, e.g. there may be model selection

mistakes, which introduces an additional source of uncertainty. The difficulty of performing

inference following regularized estimation has been documented formally by [39] and [44]

among others. As a result, development of valid post-regularization inferential procedures

is an important area of current research.

A leading case for which positive results regarding construction of uniformly valid infer-

ential statements after regularization are available is for inference about low-dimensional

sets of pre-specified coefficients in sparse linear regression models. Methods available in this

setting include post-double selection, as in [13], or debiasing, as in [49] and [56]. In each of

these cases, the model of interest is given by

yi = x′iβ0 + εi, s0 = |support(β0)| < n

where i indexes observations, n denotes sample size, yi is an outcome, xi are covariates, εi

are idiosyncratic disturbance terms, and β0 is an unknown parameter to be estimated with

support(β0) = S0 and s0 = |S0| . The goal in these papers is then to construct a confidence

interval for the simple linear functional

a(β0) = [β0]1,

where [ · ]1 denotes the first component of a vector.4 Such inferential results have been

extended to various settings, including panel data (see [11]), various nonparametric settings

(see [12], [36]), settings with generalized linear models (see [31], [12]), and quantile regres-

sion (see [12]). The ideas in the [13] can also be generalized to estimation of parameters

defined by moment conditions whenever appropriate sparsity conditions hold and Neyman

orthogonalizations of the moment conditions are available; see for example [26], [22], and

references therein. In addition, [25], [24] and [29] describe how bootstrapping can be used in

conjunction with some of the previously cited techniques. These bootstrapping techniques

also allow control of family-wise error rates for a large number of hypothesis tests. It is worth

noting that in all of these procedures, in addition to sparsity in the equation of interest,

additional assumptions regarding sparsity of the relationships between the covariates are

required.

The purpose of this paper is to propose and analyze a simple post-model-selection infer-

ential procedure, targeted undersmoothing, which is applicable for inference about ϑ0 defined

by a general class of functionals

ϑ0 = a(P0),

4Approaches in this setting can easily be extended to accommodate the case where the object of interest

is a known, small finite-dimensional subset of the full parameter vector.
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under a single sparsity condition on the model of interest with data generating process

P0. Importantly, the class of functionals we consider may be dense, in the sense that they

depend non-trivially on the entire high-dimensional parameter vector, may depend on the

process generating the observations (xi, yi), and may correspond to objects that are not
√
n

estimable. Examples of such functionals are (i) the conditional mean of Y at a particular

point X = x0, x′0β0, in a linear model and (ii) a heterogeneous treatment effect for an indi-

vidual given a high-dimensional vector of characteristics of that individual. More generally,

the approach we propose provides a procedure that may be used to obtain inferential state-

ments about a large class of functionals that are of interest to economists such as marginal

effects, elasticities, and counterfactual quantities of interest such as profits and welfare.

Our proposal is to form confidence sets for ϑ0 by starting with a typical confidence interval

obtained from an initially selected model and then systematically enlarging the interval by

perturbing the model to account for possible model selection mistakes. More formally, our

proposed confidence set is constructed as the union of standard statistical confidence sets

based on the convex hull of CI(Ŝup) ∪ CI(Ŝlow), where CI(S) denotes a confidence region

for ϑ0 based on a model S under the assumption that S is the correct model. Ŝup and Ŝlow

are in turn models selected from the data based on

1. An initially selected model Ŝ0 chosen via a standard method targeting model fit to

the data.

2. Two additionally selected models: an upper model Ŝup ⊇ Ŝ0 and a lower model,

Ŝlow ⊇ Ŝ0 chosen by respectively targeting worst-case upper and lower bounds on the

functional of interest that can be achieved by small augmentations to the model Ŝ0.

In practice, the initial model selection is performed with a standard high dimensional

estimator like lasso. The subsequent model selection steps depend on the functional of

interest and target the behavior of that functional accommodating model selection mistakes

made in the first step. The subsequent steps are important since mistakes are inherent to all

model selection procedures unless unrealistic conditions are imposed on the formal setting.5

In this paper, when discussing model selection mistakes, we mean variables j ∈ S0 such

that j /∈ Ŝ0. Note that model selection mistakes are captured by the set S0 \ Ŝ0. We let ŝ

denote ŝ = |Ŝ0| and δŝ denote δŝ = |S0 \ Ŝ0|. We make the strong but important assumption

that the researcher has a known upper bound, s, on the number of possible model selection

mistakes, s > δŝ.

We note that the properties of δŝ for a given model selection procedure like lasso may be

difficult to calculate. A second option for choosing s̄ exists when a researcher is willing to

assume a value for s0 but is unwilling to make assumptions about δŝ. In this case, a simple

and valid choice for s̄ is s̄ = s0. Note that by construction, δŝ 6 s0 which immediately gives

s̄ > δŝ.
6

5Such conditions include β-min conditions, which assert that nonzero unknown parameters must be

bounded uniformly away from zero in absolute value.
6In practice, a situation could easily arise where ŝ > s̄ if s̄ is taken to be a bound on s0. This situation

can occur because typical bounds on the behavior of lasso imply that ŝ 6 O(1)s0 and not necessarily that

ŝ 6 s0; see [14] and other references on lasso cited above. In light of this possibility, bounds on δŝ may be

more desirable in practice even though such bounds depend on random quantities.
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When constructing Ŝlow and Ŝup as above, the two conditions |Ŝlow \ Ŝ0| 6 s̄ and |Ŝup \
Ŝ0| 6 s̄ are enforced. Enforcing these conditions ensures that all involved selected sets are

relatively sparse, which is important for good performance in practice, and that, in theory,

the second round of selection is sufficient to capture any selection mistakes made in the first

step and capture the true model.

The name ‘targeted undersmoothing’ is motivated by a useful, though informal, heuristic

analogy between high-dimensional estimation and nonparametric estimation. A key problem

in nonparametric regression estimation is to choose a bandwidth (for kernel-based estimates)

or a set of approximating functions (in series- or sieve-based methods). Sufficiently small

bandwidths and more flexible sets of approximating functions each lead to undersmoothing

in estimating the target function in the sense that bias bias may be taken to be small

relative to sampling variation. Undersmoothing can thus be used to justify inference based

on correctly-centered Gaussian approximations. For a review, see [40]. Choosing a bandwidth

or set of approximating functions is not unlike choosing a penalty parameter in `1-penalized

regression where smaller values of the penalty parameter result in more complex models.

Unfortunately, simply decreasing the penalty parameter in penalized estimation of a

sparse high-dimensional model does not alleviate bias in the same way as decreasing a

bandwidth in a traditional kernel problem due to the complexity of the model space inherent

in high-dimensional problems. Heuristically, moderate strength signals whose exclusion leads

to bias are hard to pick out from among the many irrelevant variables; and as the penalty

parameter is lowered beyond theoretically justified levels, it is likely that the first variables

to enter the model will be irrelevant signals that happen to be moderately correlated to

the outcome in the sample at hand. In this case, the decrease of the penalty parameter

does not alleviate bias by introducing variables with moderate, but non-zero, coefficients

that were previously missed and simultaneously introduces a type of endogeneity bias as

those irrelevant variables that are introduced are precisely those with the highest correlation

to the noise within the current sample. Intuitively, the targeted undersmoothing approach

addresses this problem by undersmoothing in those directions that seem to be most likely

to account for bias by directly focusing on the functional of interest rather than model fit.

Our paper complements several interesting papers that look at similar problems. The

work in [22] develops general theory for a procedure for inference about a relatively low-

dimensional set of prespecified target parameters when machine learning is used to estimate

some features of the model under weak conditions. [53] study asymptotically Gaussian in-

ference for heterogeneous treatment effects using random forests, and the ideas of [53] are

extended to other objects of interest in [5]. Relative to the present work, the formal results in

[53] and [5] are developed in settings with low-dimensional controls. [6] study estimation of

heterogeneous treatment effects in conjunction with machine learning; see also [7]. Inference

in [6] relies on tree-based methods and sample-splitting where part of the sample is used to

learn the splitting rule for the tree and the other part of the sample is used to do inference

for heterogeneous treatment effects conditional on the tree learned in the first subsample.

[4] perform residual rebalancing to estimate average treatment effects with high dimensional

control variables when regression equations are given by sparse linear models under very
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weak restrictions on the propensity score model that include cases where the propensity

score does not have a natural sparse representation. [18] consider construction of confidence

sets for dense functionals given by a(β) = ‖β‖l for various 1 6 l 6 ∞. Perhaps the most

closely related current papers are [58] and [59]. Both [58] and [59] construct hypothesis tests

for objects similar to those considered in our paper via `1-projections of coefficient estimates

to the set of coefficients consistent with the null. [58] only considers linear functionals while

[59] considers general nonlinear functionals but imposes stronger sparsity conditions than

those employed below. We compare the performance of the tests in [58] to inference based

on our proposed targeted undersmoothing procedure in the simulation section of this paper.

This paper also complements recent work in selective inference. Selective inference refers

to inferential techniques for parameters β0,S which depends on a model S. The goal is

to approximate the sampling distribution of an estimated β̂Ŝ |Ŝ; i.e. to approximate the

distribution of an estimator conditional on the selected model Ŝ. See, for instance, [38],

which carries out selective inference in the high-dimensional linear model in the case that Ŝ

is chosen using lasso. Selective inference is a sensible analytic tool for assessing uncertainty

about model parameters when the selected model will be fixed and utilized for subsequent

applications. Targeted undersmoothing and selective inference are designed for different

objectives. Targeted undersmoothing aims to deliver inferential statements about objects

of interest as defined in the population model rather than the values of these objects after

conditioning on a selected model.

The need to specify s̄ is a limitation of our proposed method. However, this limitation is

not unique to this paper. Approaches to undersmoothing in the traditional nonparametric

literature also rely on ad hoc decisions about exactly what one means by sufficiently small

bandwidth or sufficiently flexible set of approximating functions, for example. With few

exceptions, high-dimensional estimators perform well under sparsity assumptions, and per-

form poorly when sparsity fails.7 Furthermore, to the best of the authors’ knowledge, there

are currently no reliable tests for the violation of sparsity in the statistics or econometrics

literature.

Given the dependence of the proposed procedure to the ad hoc choice of s̄, we feel that the

proposed approach will be most helpful when viewed through the lens of sensitivity analysis.

Specifically, one may look at how confidence regions for objects of interest change as one

varies s̄ over sensible values, for example, s̄ ∈ {0, 1, ..., s̄∗}. Because the exercise starts with a

model selected through a high-quality model selection procedure, setting s̄ = 0 corresponds

to this procedure producing no model selection mistakes which happens in scenarios where

oracle model selection is possible; see [30], [60] , [17]. As one then considers increasing s̄,

one is considering scenarios where the initial selector is allowed to have made increasingly

many selection mistakes. By looking at several values for s̄, one thus gains insight into how

sensitive conclusions are to the number of model selection mistakes made by the initial

selector. This approach is similar to applications of sensitivity analysis in treatment effects

estimation where a variety of approaches to sensitivity analysis exist for gauging sensitivity

7See for instance, [33], which allows more instruments than observations but does not impose sparsity in

the first stage.
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of causal estimators to violations of underlying identifying assumptions; see, for example,

[45] and [41] for textbook reviews of classic approaches.

Two examples give an illustration of the targeted undersmoothing procedure. The first

example studies heterogeneous treatment effects in the Job Trainings Partnership Act of

1982. The second example studies expected profit from individually-targeted advertising

strategies derived from estimates of heterogeneous treatment effects. In the first example

we find that under mild assumptions on the sparsity level, it is not possible to reject the

null hypothesis that the individual-specific heterogeneous treatment effect is zero for most

individuals. However, we reject the null hypothesis of no heterogeneity fairly robustly, even

though we cannot pin down individual effects reliably. By contrast, in the advertising exam-

ple, we see that the confidence intervals for the parameters we estimate are relatively robust

to different assumptions about the true underlying sparsity level. We find strong evidence

suggesting heterogenous responses of individuals to direct mail advertising. We also find

strong evidence that strategic mailing to individuals based on their characteristics yields

substantially higher profits than either of two simple fixed mailing strategies we consider.

Finally, the paper presents a simulation study. The simulation design is motivated by the

direct mailing marketing campaign example. An interesting feature of the simulation study

is that using s̄ = 1 is sufficient for producing correct coverage probabilities in almost all

designs, even when s0 > 1 and as large as 16. We find that procedures which make use of

model selection but rely on perfect model recovery may have seriously distorted coverage,

confirming previous results in the literature.

2. Preliminaries: Rates of Convergence for Estimated Functionals of

High-Dimensional Sparse Models

This section serves as a preliminary to the main proposed inferential procedure by formally

deriving some simple convergence rates for estimators of various classes of functionals based

on a model chosen with a formal model selection procedure. These results verify that esti-

mators of even dense functionals based on sparse, post-model-selection estimators may have

favorable statistical properties, though they do not deliver a formal inferential procedure.

In Section 3, we give a procedure for constructing confidence regions around the estimates

described in the present section.

2.1. Framework

Throughout, we simply write D,β0, p, q, k, s0,P,F, etc, excluding n from the no-

tation. Operations throughout the analysis are performed for each n. In the

asymptotic analysis, all objects should be understood to belong to sequences -

{Dn}∞n=1, {β0,n}∞n=1, {pn}∞n=1, {s0,n}∞n=1, {Pn}∞n=1, {Fn}∞n=1, etc - each indexed by n.

For a sample size n, consider a dataset

D = (zi)
n
i=1
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which is a random sample jointly distributed according to a distribution P0 supported on

some subset F ⊆ Rn×q. The random variables zi ∈ Rq are the observations and are indexed

by i = 1, ..., n for sample size n. Recall the classical definition of a statistical model is a set

P = {P} of distributions P on F. The statistical model is well-specified if P0 ∈ P.

Often times it is convenient to associate a parameter to the set P. Here, we consider an

association β 7→ Pβ , where β ∈ B ⊆ Rp and Pβ ⊆ P. Therefore, each value of β associates

to a subset of the statistical model. We assume that ∪β∈BPβ = P and that β0 7→ P0 3 P0.

When the context is clear and there is no chance for confusion, we abuse notation slightly.

In discussing probabilities of events G ⊆ F, we write P(D ∈ G) to mean P0(D ∈ F). I.e.

probabilities, unless otherwise noted, are always taken with respect to the measure P0 of

the data generating process. This reduces clutter in the presentation.

We are primarily interested in high-dimensional applications where p is large compared

to n and thus assume sparsity: we maintain that only a small subset of the components of

β0 are nonzero. We set S0 = support(β0) and we define s0 = |S0|, the number of nonzero

components of the vector β0.8 In this setting, it is natural to consider estimators of β0 which

are based on model selection.

Definition 1. A model selection procedure is defined by a map M : F → 2{1,...,p}. In

addition, a model-based estimator is a map b : 2{1,...,p}×F→ Rp such that for K ⊂ {1, ..., p}
and D ∈ F, support(b(K,D)) ⊂ K. The composition b◦ (M, idF), where idF is the identity,

idF(x) = x, defines a post-model selection estimator D 7→ β̂.

It is convenient to define a notion of high dimensional convergence, which depends on

s0, p, and n. Let β̂ be any measurable estimator F → Rp. Let Ŝ denote the support of β̂,

Ŝ = support(β̂), and let ŝ = |Ŝ| denote the number of nonzero elements of β̂. We define

‖ · ‖2 to be the Euclidean norm, and ‖ · ‖2,n to be the n−1/2-normalized Euclidean norm on

Rn. The following definition is not standard, but useful in our discussion.

Definition 2. The sequence (b,M), or more generally β̂, is high-dimensionally consistent

over a class of sequences D = {P} if ŝ = O(1)s0 with probability 1− o(1) and ‖β̂ − β0‖2 =

OP

(√
s0 log p/n

)
, uniformly over D. We abbreviate this by writing (b,M) ∈ U(D) or

β̂ ∈ U(D).

Existence of estimators β̂ ∈ U(D) will be taken as a given high level condition. Many

such estimators have been proposed and analyzed in the literature; see, for example, the

textbook [16] and references contained there. Since our interest in this paper is on inference

for functionals, we do not restate sets of low-level conditions for specific estimators for

brevity. Rather, we focus on understanding the extent to which sparse estimators that satisfy

Definition 3 can be used to reliably estimate large classes of functionals of the unknown

parameter and the observed data.

The choice to consider only estimators featuring the
√
s0 log p/n rate comes at a slight

loss of generality, in favor of being concrete. Most standard high dimensional estimators will

8The setting and results in this paper can be extended to the case that β0 can be decomposed into a

sparse component and a small component, so that β0 = β
(1)
0 + β

(2)
0 , |support(β(1)

0 )| 6 s0, ‖β(2)
0 ‖2 → 0.
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achieve the above rates. In other cases, the arguments can be easily adapted.

The next two subsections discuss estimation and statistical inference for general post-

model-selection estimation techniques. Researchers are often interested in a functional of

a statistical model. In economics, common examples of functionals of interest are average

treatment effects, heterogeneous treatment effects, demand elasticities, etc. An advantage

of post-model-selection estimators is that the same selected model can be used to estimate

a wide range of functionals.

2.2. Explicitly defined functionals

In this first example, we consider functionals a : Rq × Rp → R which may depend on

D = (zi)
n
i=1 and β. We consider the entire collection {ϑ0,i}ni=1 = {a(zi, β0)}ni=1, and we will

be interested in understanding how well a(zi, β̂) approximates a(zi, β0) in the ‖ · ‖2,n norm.

Define the following notion of linearizable which will be useful in establishing the next

theorem.

Definition 3. Linearization of a. For each z, there is da(z) : Rp → R, linear, and ca(z) ∈ R
such that for every β ∈ Rp we have

|a(z, β)− a(z, β0)− da(z)′(β − β0)| 6 ca(z)‖β − β0‖2.

In addition, define Aa by the matrix

Aa =
1

n

n∑
i=1

da(zi)da(zi)
′

and, for a set K ⊂ {1, ..., p}, set φmax(K)(Aa) to be the largest eigenvalue of the principal

submatrix of Aa corresponding to the index set K.

Theorem 1. Suppose β̂ ∈ U(D). Suppose further that a are in a sequence of functionals

which satisfy Definition 3. Then

‖a(zi, β̂)− a(zi, β0)‖2,n
‖ca(zi)‖2,n + [φmax(Ŝ ∪ S)(Aa)]1/2

= OP

(√
s0 log p

n

)
.

Proof. ‖a(zi, β0)−a(zi, β̂)‖2,n 6 ‖da(zi)
′(β0−β̂)‖2,n+‖ca(zi)‖β0−β̂‖2‖2,n. The first term is

bounded by ‖β0− β̂‖2φmax(Ŝ∪S)(Aa). The second term is bounded by ‖ca(zi)‖2,n‖β̂−β0‖2.

Noting that ‖β0 − β̂‖2 = OP[(s0 log p/n)1/2] completes the proof.

When a(zi, β) is uniformly linearizable in the sense that maxi6n ca(zi) = OP(1), and

does not blow up over subsets K in the sense that max|K|6Cs0 φmax(K)(Aa) = OP(1)

for C sufficiently large, then the convergence rates simplify to ‖a(zi, β̂)− a(zi, β0)‖2,n =

OP(
√
s0 log p/n ).
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When a(zi, β) = z′iβ, then ca(zi) = 0 and Aa = 1
n

∑n
i=1 ziz

′
i. The quantities

max|K|6Cs0 φmax(K)(Aa) are known as maximal sparse eigenvalues. Under mild conditions

on zi, (see [14], [9]), the relevant sparse eigenvalues can be bounded by OP(1). In this case,

the convergence rate OP(
√
s0 log p/n ) is attained from Theorem 1. Another application

relevant to the empirical examples below is of estimating heterogeneous treatment effects.

Suppose β0 can be partitioned into β0 = ([β0]E , [β0]H) with the two components giving in-

dividual characteristic effects and characteristic-by-treatment interaction effects. Both em-

pirical illustrations below have such structure. Then if a(zi, β) = [zi]
′
H [β]H , a consequence

of the above theorem is ‖[zi]′H [β̂]H − [zi]
′
H [β0]H‖2,n = OP(

√
s0 log p/n ).

2.3. Implicitly defined functionals

The next theorem considers a different class of functionals of the parameter β. We express the

target in the context of m-estimators, following e.g. [43] and [26]. We focus on estimation

of ϑ0 ∈ R. We assume that ϑ0 is defined as a solution to moment conditions given by a

function ψ(z, ϑ, β), which takes values in R.9 Explicitly, we assume our parameters (ϑ0, β0)

are defined as a solution to

1

n

n∑
i=1

Eψ(zi, ϑ0, β0) = 0.

One sensible estimator ϑ̂ is obtained by using a plug-in β̂, calculated in a previous esti-

mation step. Then ϑ̂ is defined via the sample moment:

ϑ̂ ∈ argmin
ϑ∈A

∥∥∥∥∥ 1

n

n∑
i=1

ψ(zi, ϑ, β̂)

∥∥∥∥∥
2

for some compact set A ⊆ R which does not depend on n and which contains ϑ0. In the

development below, we simplify notation and write

m(ϑ, β) =
1

n

n∑
i=1

E[ψ(zi, ϑ, β)], m̂(ϑ, β) =
1

n

n∑
i=1

ψ(zi, ϑ, β).

We impose regularity conditions on the functions m(ϑ, β) and m̂(ϑ, β) below before giving

the rates of convergence for ϑ̂ estimated according to the above method.

Definition 4. Define the following sets centered around (ϑ0, β0) relative to sequences

(t, v, k) = (tn, vn, kn):

At := {ϑ : |ϑ− ϑ0| 6 t}

Bv,k := {β : ‖β − β0‖2 6 v
√
s0 log p/n} ∩ {β : |support(β − β0)| 6 ks0}

Definition 5. Linearization of m. For each ϑ ∈ At there is cm(ϑ) ∈ R and dm(ϑ) : Rp → R,

linear, such that for every (ϑ, β) ∈ At × Bv,k, we have

9Extension to the setting where ϑ0 and ψ(z, ϑ, β) are finite dimensional vectors with dim(ϑ0) 6

dim(ψ(z, ϑ, β)) is trivial, but requires additional notation.
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|m(ϑ, β0)−m(ϑ, β)− dm(ϑ)′(β0 − β)| 6 cm(ϑ)‖β0 − β‖22

and cm(ϑ) = O(1) uniformly over At.

Definition 6. Uniform Stochastic Equicontinuity. We have the following bound uniformly

over At × Bv,k

‖m(ϑ, β)− m̂(ϑ, β)‖2 = OP(n−1/2).

Definition 7. Identifiability. Let Γ0 = ∂
∂ϑm(ϑ0, β0). The parameter ϑ is identifiable if Γ0

exists and

2 ‖m(ϑ0, β0)‖2 > min
(
‖Γ′0(ϑ0 − ϑ)‖2, ι−1

)
, λmin(Γ′0Γ0) > ι−1

for all ϑ ∈ At for some sequence ι = O(1).

High level conditions like those captured in Definitions 4-7 are routinely used in m-

estimation problems and can be established under a variety of primitive conditions. Defi-

nition 4 simply defines appropriate local neighborhoods to the true parameters ϑ0 and β0

for use in Definitions 5 and 6. Definition 6 defines a linearization of the “population” ob-

jective function m(ϑ, β). This is a relatively weak condition which importantly does not

require that m̂(ϑ, β) is smooth. Definition 7 provides a uniform law of large numbers. This

condition can also be shown under weaker stochastic equicontinuity conditions like those

in [43] with additional assumption on the data generating process (like independent ob-

servations). For example, if m̂(ϑ, β) is smooth with probability 1, then dm̂(ϑ) can be de-

fined analogously to dm(ϑ) above. In this case, the statement in the definition of stochastic

equicontinuity given in Definition 6 follows under the following three conditions: (1) a clas-

sical stochastic equicontinuity assumption, ‖dm(ϑ)′(β0−β)−dm̂(ϑ)′(β0−β)‖2 = o(n−1/2);

(2) a condition on the quality of linearization where cm(ϑ) = O(1) and cm̂(ϑ) = O(1) for

cm̂(ϑ) defined analogously to cm(ϑ); and (3) a uniform law of large numbers over At where

‖m(ϑ, β0)− m̂(ϑ, β0)‖2 = OP(n−1/2). Definition 7 ensures that given knowledge of the data

generating process, ϑ0 is uniquely defined.

Finally, let [v]j denote the jth component of a vector v ∈ Rp. For a set K ⊂ {1, ..., p}, let

[v]K denote a vector with components [v]j , j ∈ K.

Theorem 2. Consider β̂ ∈ U(D). Suppose the conditions on the sets At,Bv,k given in

Definition 4 are met with min(t, v, k)→∞. Suppose that m satisfies Definitions 5-7. Then

for ϑ̂ defined above,

|ϑ̂− ϑ0| = OP

(
max

K⊆{1,...,p}:|K|6ks0, ϑ∈At

‖[dm(ϑ)]K‖2

√
s0 log p

n

)

Proof. Note, for n sufficiently large, ϑ̂ ∈ At since At ⊇ A. Let r be the rate given in the

statement of the theorem. By the identifiability assumption, we have that for any δ > 0,
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P(‖ϑ0 − ϑ̂‖2 > δ) 6 P

(
‖m(ϑ̂, β0)‖2 >

min(
√
ιδ, ι)

2

)
.

It therefore suffices to show that ‖m(ϑ̂, β0)‖2 < OP(r). By the triangle inequality, we have

that

‖m(ϑ̂, β0)‖2 6 I1 + I2 + I3

where we define I1 := ‖m(ϑ̂, β0) − m(ϑ̂, β̂)‖2, I2 := ‖m(ϑ̂, β̂) − m̂(ϑ̂, β̂)‖2, and I3 :=

‖m̂(ϑ̂, β̂)‖2. I1 is OP(r) by linearity (applying the Cauchy-Schwarz inequality to the (β̂−β0)

term in the linearization.) Second, I2 is OP(n−1/2) by the uniform law of large num-

bers that follows from the imposed conditions. Finally, by construction of the estima-

tor, we have I3 = ‖m̂(ϑ̂, β̂)‖2 6 ‖m̂(ϑ0, β̂)‖2. Application of the uniform law of large

numbers gives ‖m̂(ϑ0, β̂)‖2 6 OP(n−1/2) + ‖m(ϑ0, β̂)‖2. Application of linearization gives

‖m(ϑ0, β̂)‖2 = OP(r).

When the functional ϑ of interest is linear in β, then ϑ = ξ′β for some ξ ∈ Rp. In this

case, we can set ψ(z, ϑ, β) = ϑ − ξ′β. This gives dm(ϑ) = ξ, and cm(ϑ) = 0. Furthermore,

‖[dm(ϑ)]K‖2 = ‖[ξ]K‖2. In this sense, the size of the vector ξ is directly related to the

calculated rate of convergence. Note that a point forecast in a linear model is an example

of this case.

Specializing further to the case that ϑ = [β]1, note ξ has only a single nonzero component.

In this case, ‖[dm(ϑ)]K‖2 = 1 for every K containing the element 1. The corresponding rate

of convergence is
√
s0 log p/n. This rate is slower than the parametric rate of 1/

√
n. Note

that under certain regularity conditions, like those described in [13], [β0]1 can be estimated

at the parametric rate.

Despite the slower rates of convergence in some situations, the estimates described above

do have the desirable property of simplicity. The simplicity becomes more desirable when

ϑ0 is more complicated than a linear functional. In the simulation section of this paper, we

compare estimators of [β0]1 using both the plug-in estimate described above, as well as a

procedure based on [13] to quantify any potential loss in estimation quality in certain finite

sample settings.

3. Targeted Undersmoothing as an Inferential Procedure

The previous sections show that many functionals of interest can be calculated accurately

from a single estimated high dimensional model. In this section, we consider inference for

functionals ϑ0 = a(P0).10

We make the strong but important assumption that the researcher has a known upper

bound, s, on the number of model selection mistakes, defined by δŝ = |S0 \ Ŝ0|. If the

researcher has a prior assumption on s0, but is unwilling to to make assumptions on δŝ, one

10In Section 2.2, we also considered an entire profile {ϑ0,i}ni=1 = {a(zi, β0)}ni=1. We note here that we

will be able to construct pointwise confidence regions for ϑ0,i = a(zi, β0). Uniform confidence regions would

require additional adjustment.
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may also take s̄ = s0. Formally, we assume s̄ > δŝ with probability 1− o(1). As earlier, we

assume that for K ⊂ {1, ..., p}, there is an estimator β̂(K) = b(K,D) which depends on K

and the data D. In addition, assume we can construct for each K with cardinality less than

s̄+ ŝ, an observable random interval [`K , uK ] which will cover ϑ0 with a desired pre-specified

frequency if K = support(β0) = S0. In other words, we maintain that the true model is

relatively low-dimensional and that, if told the exact form of the true model, we could

construct valid inferential statements for the object of interest conditional on estimating

the true model.

Given these assumptions, we can define the following inferential procedure:

Algorithm 1. Targeted Undersmoothing.

Step 1. Select a model Ŝ0 by a fixed model selection procedure M.

Step 2. For each K, let [`K , uK ] be an associated random interval. Select

Ŝlow = argmin
K:Ŝ0⊆K⊆[p]:|K\Ŝ0|6s

`K

Ŝup = argmax
K:Ŝ0⊆K⊆[p]:|K\Ŝ0|6s

uK

Step 3. Set [`, u] = [`Ŝlow , uŜlup ]

Algorithm 1 takes an initially selected model and then searches for deviations that include

that model and add no more than s̄ extra variables. To choose how to add variables, we do

not look at model fit but rather which deviation leads to the largest change in inferential

statements about the parameter of interest. In the case of a confidence interval, we do this

separately for the upper and lower bound of the interval. This formulation intuitively con-

servatively captures the worst-case impact of up to s̄ model selection mistakes on inference

for the target quantity. Figure 1 gives a schematic representation of the model selection

timeline corresponding to Algorithm 1.

Fig 1. Targeted Undersmoothing: Schematic Diagram

————————————————————

∅

Ŝ0

Ŝlow Ŝup

⊆⊇T
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————————————————————

In order to give a formal result describing the properties of the targeted undersmoothing

procedure, define the following simple condition:
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Definition 8. The intervals [`K , uK ], K ∈ K, have uniform coverage probability α over K

if

lim inf
n→∞

inf
K∈K:S0⊆K

inf
P0∈P∈D

P(ϑ0 ∈ [`K , uK ]) > 1− α.

Theorem 3. Consider Algorithm 1. Suppose that the intervals [`K , uK ] have uniform cov-

erage probability α over K = {K : S0 ⊆ K, |K \ Ŝ0| 6 s̄}. In addition, the sparsity bound s

satisfies s > |S0|. Then

lim inf
n→∞

inf
P0∈P∈D

P(ϑ0 ∈ [`, u]) > 1− α.

Proof. The theorem follows from P(ϑ0 ∈ [`, u]) > P(ϑ ∈ [`S0∪Ŝ0 , uS0∪Ŝ0 ]). The right-hand

side has lim inf bounded by 1− α by assumption.

Note that when Ŝ0 is given by M for some (b,M) ∈ U(D), then K can be taken as

deterministic, using {K : S0 ⊆ K, |K| 6 O(1)s0 + s̄}, where the O(1) term corresponds to

the implied ŝ 6 O(1)s0 bound in the definition of U(D).

The high-level assumption that the intervals [`K , uK ] have uniform coverage probability

α over K is stronger than the lone assumption that [`S0
, uS0

] covers ϑ0 with probability

1 − α. Sufficient conditions guaranteeing uniform coverage probability α over K are easily

stated for special cases like the high-dimensional linear model. Such conditions are commonly

employed in the econometrics literature (see for example [9]) and are characterized by (1)

probabilistic lower and upper bounds on minimal and maximal sparse eigenvalues of the

matrix 1
n

∑n
i=1 ziz

′
i, (2) moment conditions on the covariates and residual terms, and (3)

rate conditions on s̄ and p. Nevertheless, a result which uses a weaker notion than uniform

coverage probability α over K could also be desirable.

The main problem in deriving such a result under weaker conditions stems from the fact

that

P(ϑ0 ∈ [`S , uS ]| S selected ) 6= P(ϑ0 ∈ [`S , uS ]).

If S is selected and S contains some j /∈ S0, then K 6= S0 for each K ⊇ Ŝ. One way in

which this issue can be addressed is if M has the further property that there exists a fixed

set T ⊇ S0 such that P(M(D) ∩ T c 6= ∅) = o(1) and P(ϑ0 ∈ [`T , uT ]) is bounded by 1 − α
asymptotically. If in addition, the sparsity bound s satisfies s > |T |, then the statement of

the theorem, lim infn→∞ P(ϑ0 ∈ [`, u]) > 1−α, is recovered. Informally, this condition states

that the set of variables which are liable for being falsely selected into Ŝ0 can be controlled

by s̄.11

Another procedure avoiding the assumption of uniform coverage probability α over K

could be constructed by foregoing the initial model selection procedure, and taking Ŝ0 = ∅.
This would eliminate the problem. However, we note that taking Ŝ0 = ∅ will consider models

which are in no sense local to the true model. This implies that such a procedure could fail

to have power against many fixed alternatives.

11We conjecture that in linear regression models under irrepresentability conditions on the design matrix,

we may take T = S0. However, since s̄ is a user-specified tuning parameter in the first place, we do not

follow this line of reasoning in this paper.
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An alternative to the above assumption is to adopt a sample splitting strategy. We par-

tition the set {1, ..., n} into a disjoint union AtB of sets of equal (or approximately equal)

size, uniformly at random. We perform initial model selection on Sample A. We calculate

Ŝlow, Ŝup using only Sample B. Formally, we outline the procedure here:

Algorithm 2. Targeted Undersmoothing with Sample Split.

Step 0. Partition the sample {1, ..., n} into disjoint sets A tB.

Step 1. Select a model Ŝ0,A by the model selection procedure M(DA) where DA is the data

D restricted to the subsample A.

Step 2. For each K, let [`BK , u
B
K ] be the associated random interval calculated using sample

B. Select

Ŝlow = argmin
K:Ŝ0,A⊆K⊆[p]:|K\Ŝ0|6s

`BK

Ŝup = argmax
K:Ŝ0,A⊆K⊆[p]:|K\Ŝ0|6s

uBK

Step 3. Set [`, u] = [`Ŝlow , uŜlup ].

Fig 2. Targeted Undersmoothing with Sample Split: Schematic Diagram

————————————————————
Sample A Sample B
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Ŝlow Ŝup
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Using this procedure allows the uniform coverage probability assumption discussed above

in Definition 8 to be dropped. Instead, we adopt the following:

Definition 9. The intervals [`K , uK ], K ∈ K, have pointwise coverage probability α over

K if for sequences K ∈ K such that S0 ⊆ K,

lim inf
n→∞

inf
P0∈P∈D

P(ϑ0 ∈ [`K , uK ]) > 1− α.

Theorem 4. Consider Algorithm 2. Suppose that the intervals [`BK , u
B
K ] have pointwise

coverage probability α over K = {K : S0 ⊆ K, |K \ Ŝ0| 6 s̄}. In addition, the sparsity bound

s satisfies s > |S0|. Then

lim inf
n→∞

inf
P0∈P∈D

P(ϑ0 ∈ [`, u]) > 1− α.
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Proof. The theorem follows from P(ϑ0 ∈ [`, u]) > P(ϑ0 ∈ [`B
S0∪Ŝ0,A

, uB
S0∪Ŝ0,A

]). The right-

hand side has lim inf bounded by 1 − α, using the fact that sample A is independent of

sample B.

Algorithm 2 will in general produce wider confidence intervals, since it is it constrained

to only work with sample B for inference. In our simulation study, we find that Algorithm

1 gives good coverage probabilities in all of the designs we tried.

Comment 3.1. In addition to giving a procedure for constructing confidence sets, another

use of targeted undersmoothing is for sensitivity analysis. Theoretical properties of targeted

undersmoothing depend on unknown - and to the best of our knowledge unlearnable - s̄.

Rather than assuming s̄ is known, trying several values s̄ ∈ {1, ..., s̄∗} allows the researcher

to see how sensitive confidence intervals and inference are sensitive to different values s0.

We use this practice in the the empirical examples and the simulation exercises below.

Comment 3.2. The above proposed algorithm is potentially computationally infeasible

with even a moderate number p of explanatory variables. Therefore, in order to implement

the procedure in practice, it may be necessary to approximate the quantities [`, u].

Depending on the exact nature of the problem, different approximations or bounds might

be obtained with different methods. For all of our simulation results and data applications

in this paper, we add covariates indexed by j into Ŝ(low) and Ŝ(up) according to a simple

greedy rule. To be explicit, we perform the following algorithm:

Algorithm 3. Greedy Approximation for Ŝlow, Ŝup.

Initialize: K̂ low, K̂up = ∅
While |K̂ low|, |K̂up| 6 s

Set ĵlow = arg min `Ŝ0∪K̂low∪{j}

Set ĵup = arg maxuŜ0∪K̂up∪{j}

Set K̂ low = K̂ low ∪ {ĵ}
Set K̂up = K̂up ∪ {ĵ}

End

Set Ŝlow = Ŝ0 ∪ K̂ low

Set Ŝup = Ŝ0 ∪ K̂up

We note that other approximations to [`, u] are also possible. For example, semidefinite

relaxations can give relatively quickly computable, valid lower bounds on ` and upper bounds

on u in some cases. One could also adopt other solution techniques for obtaining approximate

solutions to nonlinear integer programming problems. Further exploration of these options

may be useful, though we found the simple greedy algorithm presented above to perform

well relative to other options in initial simulations.

Comment 3.3. It is worth noting that targeted undersmoothing can also be used to carry

out hypothesis testing. This follows directly from the fact that confidence intervals can be

constructed from inverted test statistics and vice versa. Suppose the hypothesis of interest

is H0 : ϑ0 = ϑ̄ for a prespecified value ϑ̄. Suppose, given a model S ⊆ {1, ..., p}, that ŴS
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is an observable test statistic and that ŴS corresponds to a p-value p̂S . Then targeted

undersmoothing can be used by choosing Ŝ = Ŝ0 ∪ K̂ and by taking the set |K̂| 6 s̄ which

makes the test most conservative (equivalently maximizing p̂Ŝ .)

4. Empirical Examples

In this section, we illustrate the use of targeted undersmoothing in two examples. First, we

study effects of job training programs on wages. We are interested in estimating heteroge-

neous treatment effects in a setting where several individual characteristics are observed. In

the second example, we are interested in making individual-specific mailing strategies and

estimating the profit gain from such a strategy.

4.1. Application I: Heterogeneous Treatment Effects from JPTA

The impact of job training programs on the earnings of trainees, especially those with low

income, is of interest to both policy makers and academic economists. Evaluating heteroge-

neous causal effect of training programs on earnings is difficult due to the fact that individual

characteristics vary across the sample; it is unlikely that many individuals share exactly the

same values of observed covariates. The problem is made worse the higher the dimension of

the collected covariates.

We consider data available from a randomized training experiment conducted under the

Job Training Partnership Act (JTPA). In the experiment, people were randomly assigned

the offer of JTPA training services. Given the random assignment of the offer of treatment,

we focus this exercise on estimating the average treatment effect of the offer of treatment,

or the intention to treat effect, conditional of individual characteristics.In this example, we

limit the analysis to the sample of adult males.

To capture the effects of training on earnings, we estimate a model of the form

yi = x′iβ0 + (di · xi)′γ0 + εi

where di indicates whether training was offered, the outcomes yi are earnings, xi is a vector

of covariates which includes a constant, εi is an unobservable, and (β0, γ0) are parameters.

Earnings are measured as total earnings over the 30 month period following the assignment

into the treatment or control group, and average earnings in the sample are $19,147. Ob-

served control variables are dummies for black and Hispanic persons, a dummy indicating

high-school graduates and GED holders, five age-group dummies, a marital status dummy,

a dummy indicating whether the applicant worked 12 or more weeks in the 12 months prior

to the assignment, a dummy signifying that earnings data are from a second follow-up sur-

vey, and dummies for the recommended service strategy. See [3] for detailed information

regarding data collection procedures, sample selection criteria, and institutional details of

the JTPA along with additional facts and discussion about the JTPA training experiment.

In all, the dataset has 5102 observations.

In this example, we are interested in estimating confidence intervals for individual specific

treatment effects. We form estimates by first calculating the post-lasso estimator of the
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coefficients

(β̂PL, γ̂PL)

using the procedure described in the Implementation Appendix. Then for each individual i,

we calculate the individual-specific intent to treat effect given by

x′iγ̂PL.

There are many ways to construct regressors from the set of dummy variables available. In

this example, we consider two methods to generate regressors. The first method is based on

common practice in econometrics of generating interactions. The second method is based on

the Hadamard-Walsh expansion12 of the indicator variables described below, which generates

a far larger set of regressors. A larger set of regressors has advantages in that it can make

any sparsity assumptions more plausible, though the resulting analysis may suffer in terms

of statistical precision due to the increased complexity of the underlying model space.

To obtain the first construction we use for xi, we consider all products of the discrete

variables available. That is, we adopt the common convention of including the dummy

variables themselves, all first order interactions between the main dummy variables, all

second order interactions, and all further higher order interactions. Excluding empty and

small cells, the dimension of the covariate space is 313.13 Therefore, with the treatment

variable and constant, the total number of unknown parameters is 628. Though the number

of observations is larger than the sample size, the number of parameters is large enough

that regularized estimation would be extremely helpful in terms of obtaining informative

inference about model parameters.

Figure 3 presents pointwise confidence intervals for the individual specific effects for

all individuals.14 The intervals are calculated using four methods. The first panel presents

estimates which use the entire set of control variables. The second panel presents oracle-style

confidence intervals based on post-lasso which ignore first stage model selection. The third

panel presents targeted undersmoothing estimates using s̄ = 1. The fourth panel presents

targeted undersmoothing estimates using s̄ = 5. The targeted undersmoothing intervals are

calculated with the forward selection greedy approximation described in the Section 3. In

each case, we use Algorithm 1.

The figure shows that resulting confidence interval lengths using OLS estimates are quite

large. The interval lengths using the oracle-style confidence intervals are comparatively very

tight. Though the oracle-style intervals are expected to have poor performance in finite

samples. Using s̄ = 1 we see that many of the interval lengths increase by nearly an order of

magnitude. Though interestingly, there is wide variation across individuals in terms of how

much the corresponding confidence interval grows. With s̄ = 5, we see that the intervals

12Details about this expansion as well as some of its advantages are described in [46]
13Specifically, we start by eliminating all variables with 6 5 nonzero entries in either the control or

treated subsample. After these deletions, we then remove any variables if the corresponding diagonal R term

in QR decomposition of the design matrix was < 10−6 over either the control or treated subsample.
14In principle, other descriptions of the treatment effect distribution can also be reported. For instance,

uniform bands for the sorted effects function could be obtained by combining the results in [23] with targeted

undersmoothing. We choose to present pointwise confidence intervals for simplicity.
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are in some cases nearly as large as with the OLS-based intervals. For most individuals, the

corresponding intervals contain zero.

Fig 3. JTPA CATE Estimates: Interaction Specification

Note: These figures report estimates of the treatment effect for each individual in the JTPA sample along
with pointwise 95% confidence intervals when the set of controls is constructed by taking all possible
interactions of the baseline dummy variables. Estimates based on OLS and Post-lasso are reported in the
upper left and upper right panel respectively. The lower left and lower right panels present results based
on targeted undersmoothing with s̄ = 1 (“TU(1)”) and with s̄ = 5 (“TU(5)”) respectively. It is important
to note that vertical axis is different in each figure.

Another testable hypothesis of interest is whether there is evidence of any effect het-

erogeneity. Within the model, testing the null hypothesis of no treatment heterogeneity is

equivalent to testing H0 : γ0 = 0. As described in the previous section, a test can be imple-

mented using the targeted undersmoothing procedure. We implement this procedure using

the standard Wald test. The results are reported in Table 1 for targeted undersmoothing

using s̄ 6 10. We also report the corresponding Wald test using the entire vector of covari-

ates (labeled OLS in the table), and an oracle-style Wald test (labeled PL in the table). We

note that the OLS-based result is likely unreliable due to relying on a heteroskedasticity-

consistent estimate of a large, full covariance matrix. We reject the null hypothesis for s̄ 6 7

at the 5% level but fail to reject for larger s̄. An interesting property of the hypothesis

testing scheme is that the degrees of freedom stay constant. This means that the additional

covariates entering the model correspond to components x′iβ0, and not the interaction terms

(di · xi)′γ0.

The existence of a sparse representation of the regression function in the basis given by the

interaction expansion is an important modeling assumption in the above analysis. It is possi-

ble to perform a further robustness analysis by considering more expansive models. In order

to illustrate this point, we perform the analysis with an expanded set of transformations of

the original dummy variables. We consider the Hadamard-Walsh basis defined as follows.
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Table 1
Testing the Null Hypothesis of No Treatment Effect Heterogeneity: Interaction Specification

Estimator W-statistic df p-value
OLS 679.14 313 0.0000
PL 17.1444 7 0.0088
TU(1) 16.4910 7 0.0210
TU(2) 15.9709 7 0.0254
TU(3) 15.5022 7 0.0301
TU(4) 15.0803 7 0.0350
TU(5) 14.7097 7 0.0399
TU(6) 14.4253 7 0.0441
TU(7) 14.1517 7 0.0485
TU(8) 13.9339 7 0.0524
TU(9) 13.5463 7 0.0599
TU(10) 13.3584 7 0.0638

Note: This table presents results for testing the null hypothesis of no treat-
ment effect heterogeneity when the set of controls is constructed by taking
all possible interactions of the baseline dummy variables. We report the value
of the Wald statistic (“W-statistic”), degrees of freedom (“df”), and associ-
ated p-value (“p-value”). Results for testing this hypothesis based on OLS
and Post-lasso estimates are provided in the first two rows of the table. Rows
labeled “TU(j)” correspond to targeted undersmoothing with s̄ = j.

Let vi1, ..., vik denote the original set of indicator variables. Let each subset A ⊆ {1, ..., k}
index a transformation of (vi1, ..., vik) given by ψA(vi1, ..., vik) = (−1)|A∩{j:vij=1}|. In the

expanded model, we include regressors of the form ψA(vi1, ..., vik). In order to nest the pre-

vious analysis, we also include all of the interaction variables from the first specification.15

The result is that dim(xi) = 2927, including the constant term. After interacting xi with

the indicator di, the total dimensionality of the model parameters is 5854, which exceeds

the sample size n = 5102.

Figure 4 presents pointwise confidence intervals for the individual specific effects for all

individuals using the new, expanded set of transformations of the original variables. In

this analysis, OLS is no longer feasible because the dimensionality of the model exceeds the

sample size. The first panel presents oracle-style confidence intervals, which ignore first stage

model selection. The estimated distribution of heterogenous effects is much smoother than

that obtained in Figure 3. Interestingly, the initial model selection selects terms from both

the interaction expansion and the Hadamard-Walsh expansions. The second panel presents

targeted undersmoothing estimates using s̄ = 1, and the third panel presents targeted

undersmoothing estimates using s̄ = 5. The targeted undersmoothing intervals are calculated

with the forward selection greedy approximation described in the Section 3. As before, in

each case, we use the single sample option described in Algorithm 1.

The figure shows that resulting oracle-style confidence intervals are similar to those in

Figure 3. Both sets of interval lengths are comparatively very tight. Though, as discussed

above, the oracle-style intervals are expected to have poor performance in finite samples.

Using s̄ = 1 we see that many of the interval lengths increase as before. There still remains a

set of individuals for whom the corresponding confidence interval excludes zero. With s̄ = 5,

for all individuals, the corresponding intervals contain zero. Though not pictured in Figure

15We choose to only include ψA terms as potential covariates for 1 < |A| < 6. Note that for |A| = 1, the

resulting transformations are perfectly correlated to the original indicator variables.
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Fig 4. JTPA CATE Estimates: Hadamard-Walsh Specification

Note: These figures report estimates of the treatment effect for each individual in the JTPA sample along
with pointwise 95% confidence intervals where the set of controls is constructed by taking all possible
interactions of the baseline dummy variables and augmenting with the Hadamard-Walsh basis as described
in the main text. Estimates based on Post-lasso are reported in the top panel. The middle and bottom
panels present results based on targeted undersmoothing with s̄ = 1 (“TU(1)”) and with s̄ = 5 (“TU(5)”)
respectively. It is important to note that vertical axis is different in each figure.

4, we note that all intervals for individual-specific treatment effects include 0 as soon as

s̄ = 2.

Finally, we again report results for testing the null hypothesis of no treatment hetero-

geneity, H0 : γ0 = 0, using the expanded model in Table 2. The procedure is implemented as

before, using the standard Wald test and the results are reported in targeted undersmooth-

ing using s̄ 6 10. We see that we reject the null hypothesis for s̄ = 1 at the 5% level but fail

to reject for s̄ > 2.

Taken together, the results in this section suggest there is mild evidence for treatment

effect heterogeneity in this example. We would reject the hypothesis of no heterogeneity

and also obtain some evidence for individual specific treatment effects that differ from zero

when using oracle model selection results. However, we cannot rule out the possibility of

no treatment effect heterogeneity after allowing for a modest number of model selection

mistakes within either of the bases considered. Thus, to draw strong conclusions about

treatment effect heterogeneity, one must believe that the initial model selection procedure

is very close to perfect in this example.
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Table 2
Testing the Null Hypothesis of No Treatment Effect Heterogeneity: Hadamard-Walsh Specification

Estimator W-statistic df p-value
PL 20.6884 9 0.0141
TU(1) 19.4059 10 0.0354
TU(2) 18.1018 10 0.0533
TU(3) 17.5105 10 0.0638
TU(4) 16.8746 10 0.0772
TU(5) 16.3060 10 0.0912
TU(6) 15.7466 10 0.1071
TU(7) 15.2801 10 0.1222
TU(8) 14.8188 10 0.1388
TU(9) 14.3024 10 0.1596
TU(10) 13.9031 10 0.1775

Note: This table presents results for testing the null hypothesis of no treat-
ment effect heterogeneity when the set of controls is constructed by taking all
possible interactions of the baseline dummy variables and augmenting with
the Hadamard-Walsh basis as described in the main text. We report the value
of the Wald statistic (“W-statistic”), degrees of freedom (“df”), and associ-
ated p-value (“p-value”). Results for testing this hypothesis based on OLS
and Post-lasso estimates are provided in the first two rows of the table. Rows
labeled “TU(j)” correspond to targeted undersmoothing with s̄ = j.

4.2. Application II: Heterogeneous Treatment Effects in Direct Mail

The targeting of individuals with appropriate interventions that induce preferred outcomes

is a relevant problem in various application areas including business, political science and

economics. In the field of marketing, such targeting has been the key instrument of retailers

that use direct mail as the focal intervention to inform and persuade their customers to

purchase from their catalogs. These catalogs are often relatively expensive to produce and

firms spend significant amounts in this endeavor.16

Our data for this example comes from a large multi-product retailer that sells directly to

consumers online but also via mail, phone and retail channels. The firm’s budget for direct-

mailed catalogs is over $120M and net sales per year are in excess of $1.5B. The firm routinely

runs experiments to evaluate the effectiveness of its catalog mailing strategy. Typically, these

experiments have two conditions (mail, no-mail) that are randomized across customers. Our

data focuses on one such experiment that involved over 290,000 customers. The data also

include a list of 486 descriptors of the the individual customers. These descriptors include

demographic characteristics (age, income, gender, state), details of past promotional activity

they may have received as well as their past consumption behavior data including purchases,

the timing of such purchases, the number of orders in the past year, and the extent of

their expenditures with the firm. This last set of variables are commonly referred to as

RFM (Recency, Frequency and Monetary value) metrics in the direct mail industry and are

commonly used variables in analyzing and predicting customer behavior. We note that the

design matrix in our analysis contains 2139 columns once categorical variables are expanded.

In our analysis, we estimate the following simple specification of a model with heteroge-

16In 2009, the estimated spending on catalogs was $15.1B; and over 10B catalogs were mailed in 2015

([1], [2]).
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neous treatment effects:

yi = f0(di, xi, εi) = xiβ0 + (di · xi)′γ0 + εi.

In the above, di is an indicator that a consumer has been randomly assigned to receive a

direct mail marketing instrument (a catalog), and the xi are customer characteristics. yi

are dollar expenditures by the customer over a 3-month horizon following the mailing of

the marketing instrument. For notational convenience, we assume that (xi, εi)
n
i=1 are n i.i.d.

draws, having the same distribution as the generic pair of random variables (x, ε).

In this exercise, we assume that the firm is interested in evaluating a marketing strategy

formed from targeting individuals based on their individual-specific treatment effects versus

one of two simple baseline strategies - either mailing to no one or mailing to everyone. To

this end, we note that a mailing strategy d̃ = d̃(x) assigns customers with characteristics

x to either receive the mailing or not. We then adopt targeted undersmoothing to provide

a simple mechanism that allows the firm to statistically evaluate the difference between

any two competing mailing strategies on the basis of average expected profits. The average

expected profit from implementing a strategy d̃ is given by

E[π(d̃)] = E
[
νf0

(
d̃(x), x, ε

)
− d̃(x)c

]
.

A few points about the above quantity are worth noting. First, the firm has a known

margin (0 < ν < 1) that applies to sales generated by its customers. For simplicity, we as-

sume that the cost to the firm of targeting each consumer, c, is constant and known ex

ante.17 Within the model, there is just one remaining source of uncertainty - the unantici-

pated demand shocks ε which are only observed via outcomes - which are assumed to have

conditional mean zero.

We begin by examining two extremal mailing strategies where either no customers re-

ceive a catalog (‘no-mailings’) by setting d̃(x) = 0 uniformly or a ‘blanket-mailing’ strategy

wherein all customers receive a catalog (i.e. d̃(x) = 1 for all x). For the no-mailings strategy

expected profits are

E[π0] = E[νf0 (0, x, ε)]

= νE[x′β0].

Similarly, the expected profit for the blanket mailing strategy can be written as

E[π1] = E[νf0(1, x, ε)− c]

= νE[x′(β0 + γ0)]− c.

A sophisticated firm might be interested in optimizing the mailing strategy based on

expected consumer response.18 One simple, sensible mailing strategy would be to mail to a

17A more general approach would be to write costs as functions of x. Implementing this approach would

require specific data about individual mailing costs which we currently do not have. We could also assume

that costs are drawn from some known distribution where the exact realization is unknown by the firm until

after the mailings have been sent out and calculate expected profits integrating over this cost distribution.
18See [8] and [50] for interesting approaches to estimating and performing inference for optimal treatment

strategies.
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consumer with characteristics x whenever the expected increment in profits for that customer

exceeds costs. The rule can be described by

d∗(x) = 1{ν(x′β0 + x′γ0)− ν(x′β0) > c}

= 1{ν (x′γ0) > c}.

Using this strategy, we then have expected per consumer profit of

E[π∗] = E[νf0(d∗(x), x, ε)− cd∗(x)]

= νE[xβ0] + νE[(d∗(x) · x)′γ0]− cPr(d∗(x) = 1).

Now suppose we wish to compare the targeted strategy to the ‘blanket’ or ‘no-mailing’

strategies. We can describe the difference in profit between the targeted and no-mailing

strategies as

E[∆π∗0] = E [π∗]− E
[
π0
]

= νE[(d∗(x) · x)′γ0]− cPr(d∗(x) = 1).

Similary, the difference between the targeted and blanket strategies would be

E[∆π∗1] = E [π∗]− E
[
π1
]

= νE[(d∗(x)− 1) · x′γ0]− c(Pr(d∗(x) = 1)− 1).

We note that both of the expected per-person profit differentials capture the benefits due to

cost savings and lost revenues of targeting based on expected treatment effects. Relative to

targeting no one, targeting based on anticipated treatment effect has the potential to increase

revenue at the cost of paying the treatment cost for the targeted individuals. Relative to

treating everyone, targeting based on anticipated revenues has the potential to decrease

costs by not targeting individuals for whom the treatment is anticipated to be ineffective.

Simple natural estimators exist for both E[∆π∗0] and E[∆π∗1] The natural estimator for

E[∆π∗0] is

∆̂π∗0 =
ν

n

n∑
i=1

[
1{ν (x′iγ̂0) > c} (x′iγ̂0 − c/ν)

]
for some estimator γ̂0. Similarly, a natural estimator of E[∆π∗1] is

∆̂π∗1 =
ν

n

n∑
i=1

[
(1{ν (x′iγ̂0) > c} − 1) (x′iγ̂0 − c/ν)

]
for an estimator γ̂0. Under the sparsity assumptions on the true model maintained in this

paper and conventional regularity conditions, ∆̂π∗0 and ∆̂π∗1 will by asymptotically nor-

mal with standard error that can be estimated via the delta-method when γ0 is estimated

from the true model. Based on this observation, we can apply the targeted undersmoothing

approach to conduct inference on potential profit improvements from targeting based on the

rule d∗(x) relative to the two simple baseline strategies.
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We present estimates and targeted undersmoothing confidence intervals for E[∆π∗0] and

E[∆π∗1] in Tables 3 and 4 respectively.19 In all calculations, the margin parameter is set

to ν = 0.30 and the cost parameter is set at c = 0.70 based on input from the firm. We

first report OLS-based estimates, which use all covariates. In addition, we report oracle-style

post-lasso estimates as well as targeted undersmoothing estimates for s̄ 6 10. We implement

the first stage model selection using the procedure in Appendix 1. We use heteroskedasticity

consistent standard errors and calculate confidence intervals using the delta method.

Table 3
Estimates for Average Profit Differential Relative to No Mailing:

E[∆π∗0]

Estimator Estimate S.E. Lower Upper
OLS 1.1514 0.0655 1.0229 1.2798
PL 0.6984 0.0441 0.6119 0.7849
TU(1) 0.6099 0.7960
TU(2) 0.6083 0.8063
TU(3) 0.6070 0.8131
TU(4) 0.6062 0.8188
TU(5) 0.6054 0.8269
TU(6) 0.6045 0.8323
TU(7) 0.6036 0.8375
TU(8) 0.6029 0.8430
TU(9) 0.6023 0.8476
TU(10) 0.6018 0.8514

Note: This table presents estimates of the average profit differential between
the targeted mailing strategy and the strategy that mails to no one. OLS and
Post-lasso estimates of the average profit differential and associated standard
errors are provided in the “Estimate” and “S.E.” columns in the first two
rows. The “Lower” and “Upper” columns respectively report the lower and
upper bounds of 95% confidence intervals. Rows labeled “TU(j)” correspond
to targeted undersmoothing with s̄ = j.

We see that the confidence intervals for the parameters E[∆π∗0] and E[∆π∗1] are very

robust to different assumptions about the true underlying sparsity level s̄. Interestingly, the

OLS-based intervals are completely different from the targeted undersmoothing intervals for

every value of s̄ reported. This difference is likely due to a failure of OLS in this example.

In the setting of the simulation study below, we find that OLS-based intervals achieve poor

coverage probabilities with coverages as low as 0.00% in some settings. The poor performance

of OLS in the simulation study is due to biases arising from taking a nonlinear transformation

of the estimated coefficient vector and a failure of the standard delta method with a large

number of covariates.20 In this example, the OLS-based estimates seem to overstate both

E[∆π∗0] and E[∆π∗1].

Finally, we test the hypothesis H0 : γ0 = 0 in Table 5. As in the previous example, this

hypothesis corresponds to the hypothesis of no treatment effect heterogeneity. From a policy

standpoint, understanding whether there is evidence for treatment effect heterogeneity may

19As with the JTPA example, before any estimation is done, variables with a very small number of

nonzero observations are excluded. In the first pass, variables with 6 100 nonzero entries in the entire

sample were eliminated. In the second pass, variables were eliminated if the corresponding diagonal R term

in the design matrix QR decomposition was < 10−6 over either control or treated subsample.
20Bias corrections for the delta method in settings with many covariates are described in [21]. For

simplicity, we report the estimates and intervals which correspond to common practice.
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Table 4
Estimates for Average Profit Differential Relative to Uniform Mailing:

E[∆π∗1]

Estimator Estimate S.E. Lower Upper
OLS 0.6332 0.0789 0.4785 0.7879
PL 0.1811 0.0497 0.0837 0.2784
TU(1) 0.0821 0.2905
TU(2) 0.0807 0.3001
TU(3) 0.0798 0.3076
TU(4) 0.0788 0.3132
TU(5) 0.0779 0.3205
TU(6) 0.0773 0.3261
TU(7) 0.0767 0.3309
TU(8) 0.0762 0.3361
TU(9) 0.0758 0.3401
TU(10) 0.0754 0.3437

Note: This table presents estimates of the average profit differential between
the targeted mailing strategy and the strategy that mails to everyone. OLS
and Post-lasso estimates of the average profit differential and associated stan-
dard errors are provided in the “Estimate” and “S.E.” columns in the first two
rows. The “Lower” and “Upper” columns respectively report the lower and
upper bounds of 95% confidence intervals. Rows labeled “TU(j)” correspond
to targeted undersmoothing with s̄ = j.

be interesting as there is clearly no gain from any targeting strategy based on observables

if the treatment effect is constant across these observables. The results for testing this hy-

pothesis are presented in Table 5. We note that the OLS-based result is likely unreliable

due to relying on a heteroskedasticity-consistent estimate of a large, full covariance matrix,

but we report the result for completeness. In this example, we see that the p-values are

very near zero for all considered values of s̄, suggesting that there is strong evidence against

the hypothesis of no treatment effect heterogeneity that is robust to fairly large deviations

from the initially selected model. As in the previous example, we also see that the degrees

of freedom of the test is constant across the different values of s̄ indicating that the ad-

ditional variables being added all enter the model via the xiβ0 term. Adding variables to

this part of the model that are correlated to the estimated treatment effect reduces the

signal available to learn about treatment effect heterogeneity and thus intuitively provides

“worst-case” deviations from the standpoint of drawing conclusions about the existence of

this heterogeneity.

5. Simulation Study

In this section, we present a simulation study designed to demonstrate the properties of

the proposed procedure in finite samples. We consider six simulation designs based on the

example in Section 4.2. We generate data for each simulation replication as iid draws for

i = 1, ..., n from the model

yi = α0 + x′iβ0 + diγ0 + di · x′iζ0 + εi,



C. Hansen, D. Kozbur and S. Misra / Targeted Undersmoothing 27

Table 5
Testing the Null Hypothesis of No Treatment Effect Heterogeneity

Estimator W-statistic df p-value
OLS 1865.7525 1069 0.000
PL 692.4930 45 0.000
TU(1) 685.5655 45 0.000
TU(2) 680.9011 45 0.000
TU(3) 678.0659 45 0.000
TU(4) 675.3192 45 0.000
TU(5) 672.9171 45 0.000
TU(6) 671.3020 45 0.000
TU(7) 669.6907 45 0.000
TU(8) 668.4609 45 0.000
TU(9) 667.4802 45 0.000
TU(10) 666.4816 45 0.000

Note: This table presents results for testing the null hypothesis of no treat-
ment effect heterogeneity. We report the value of the Wald statistic (“W-
statistic”), degrees of freedom (“df”), and associated p-value (“p-value”).
Results for testing this hypothesis based on OLS and Post-lasso estimates
are provided in the first two rows of the table. Rows labeled “TU(j)” corre-
spond to targeted undersmoothing with s̄ = j.

p = 2 + 2dim(xi) = 2(1 + k),

wij ∼ N(0, 1) with corr(wij1 , wij2) = 0.8|j1−j2|,

xij = (wij − τj)1{wij > τj},

τj ∼ unif(0, 1.28), iid,

di ∼ Bernoulli(0.5),

εi ∼ N(0, 1),

(α0, β
′
0) = c.25(1/

√
s0, (2/

√
s0)ι′s0/4, (2/

√
ns0)ι′s0/4, 0

′
k−s0/2)� (1, υ′),

(γ0, ζ
′
0) = c.25(1/(2

√
s0), (4/

√
ns0)ι′s0/4, (4/

√
s0)ι′s/4, 0

′
k−s0/2)� (1, υ′),

where c.25 is a constant that is chosen so that the population R2 of the regression of yi onto

(1, x′i, di, dix
′
i) is 0.25, ιm is an m×1 vector of ones, 0m is an m×1 vector of zeros, υ is a k×1

vector with jth element given by υj = (−1)j−1, and � denotes the Hadamard product. The

six considered simulation designs are based on varying p ∈ {202, 602} and s0 ∈ {4, 8, 16}. In

all simulations, we take n = 400. We note that the process for the xij is meant to approximate

what we see in the observables in the example in Section 4.2 which are all positive with large

fractions of observations exactly at 0. For each simulation design, we estimate and construct

confidence sets for three functionals: (1) the value of a single coefficient (specifically ζ0,1),

(2) an individual treatment effect for a fixed hypothetical subject (with x∗ = .5ιdim(xi)),

and (3) the average per-person profit differential from a targeting rule based on estimated

individual specific treatment effects and a rule which treats no one (E[∆π∗0] defined in

Section 4.2).

For each set of model parameters, we simulate 500 replications and present the properties

of several estimators:

1. True. An infeasible estimator based on ordinary least squares on the correct support

of the underlying model.
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2. All. An estimator based on ordinary least squares using all covariates.

3. Double. The post-double estimator as described in [13]

4. Lasso. An estimator based on lasso. Standard errors computed using lasso residuals.

5. PL. An estimator based on the post-lasso estimator of [10]. Standard errors computed

using post-lasso residuals.

6. LCV. An estimator based on lasso with penalty level chosen by 10-fold cross valida-

tion. Standard errors are computed using lasso residuals.

7. ZB. Confidence intervals based on inverting the hypothesis test prosed in [58].

8. TU(1). Targeted undersmoothing with s = 1 using Algorithms 1 and 3. Initial model

Ŝ0 description in Implementation Appendix.

9. TU(10). Targeted undersmoothing with s = 10 using Algorithms 1 and 3. Initial

model Ŝ0 description in Implementation Appendix.

All standard errors are computed using conventional heteroskedasticity consistent stan-

dard errors (e.g. [55]) using the estimated residuals indicated above. We give details on

implementation specifics in the following paragraphs.21

For True, All, and Double, we directly estimate the model above. For Double, we apply

[13] with a minor modification. We implement the relevant lasso regressions from [13] using

the modified heteroskedastic lasso of Appendix 1.

To implement lasso, PL, we use the implementation given in Appendix 1 to select a model.

The PL estimates re-estimate coefficients by applying OLS with only the variables selected

by lasso. For LCV, we use a modification of the procedure in Appendix 1, where 10-fold

cross-validation within each subset is used to choose the tuning parameter to use in that

subset. We then apply the conventional lasso within each subset based on these estimated

tuning parameters. For these methods, we then can obtain estimates and standard errors for

the functionals of interest in the obvious manner. ZB implements the proposed method of

inference for dense linear functionals of a parameter vector from [58]. Finally, the PL model

serves as our initial model when applying targeted undersmoothing. We apply targeted

undersmoothing for s̄ = 1, ..., 10.

To measure the performance of the nine procedures, we report estimates of bias, standard

deviation, root mean-square error (RMSE), coverage probability for a 95% confidence inter-

val, and corresponding confidence interval length from the simulation in Tables Sim1-Sim6

and Figures Sim1-Sim6. In the figures, we provide average confidence interval lengths and

coverage probabilities along the 10-steps of the forward selection path produced in the sim-

ulation. As a benchmark, we superimpose coverage probabilities and interval lengths for the

infeasible ‘True’ estimator which knows the correct model on the targeted undersmoothing

path plots.

The ‘True’ estimator provides an infeasible benchmark which serves as a basis for com-

parison. In most simulations, the ‘True’ estimator achieves the target 95% coverage proba-

21There are many choices about how to implement the different procedures, e.g. whether to split into

treatment and control observations and which penalty parameters to use. The choices below were based

on initial simulations where they seemed to produce the most favorable performance for the non-targeted

undersmoothing approaches.
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bility. In general, the ‘True’ estimator also achieves the smallest bias, RMSE, and shortest

confidence intervals. All other estimators provide feasible alternatives that ideally would

approximate the behavior of this infeasible benchmark.

When the number of parameters to be estimated is smaller than the sample size, a simple

feasible option is to estimate the full-model without any model selection. In terms of our

simulation, this approach clearly results in small bias for the individual regression parameter

and for the individual-specific treatment effect as both of these objects are linear combina-

tions of the regression coefficients and the variables in the design are mean-independent of

the error term. The cost of estimating the full model is decreased estimation precision as

evidenced by relatively large standard deviation and RMSE relative to the other point esti-

mators. We also see that the confidence intervals produced after estimating the full model

are relatively long, often longer than the intervals resulted from targeted undersmoothing

with small or moderate s̄. The most interesting feature of the results based on the full

model are for estimating the profit differential. For this object, the estimator is dominated

by bias due to the profit differential depending nonlinearly on the model parameters and

the imprecision in estimating these parameters. This bias then results in very poor coverage

properties for the true profit differential. This behavior can be viewed as a failure of the

delta-method in moderate or high-dimensional models; see [20]. We suspect this behavior

will carry over to many nonlinear settings.

We next examine the performance of ‘Lasso’ and ‘PL’. We note that the lasso penalty

parameter in this case is set in a manner that theoretically provides lasso with an optimal

rate of convergence and guarantees that the ŝ = O(1)s0. We then conduct inference in these

cases by relying on oracle-type results (see for example [60], [17]) that ignore the first step

model selection. These estimators behave roughly as expected by theory. In general, the

estimators are competitive in terms of RMSE for all objects considered across all different

designs. However, their bias also tends to be comparable to their standard deviation due

to regularization and model selection mistakes. Oracle-style approximations do not account

explicitly for this remaining bias due to regularization and as a result do not achieve correct

coverage rates. We note that these distortions can be severe. Coverage for these procedures

is generally far from the nominal 95%; and in some cases, the estimators have 0% coverage.

We note that targeted undersmoothing is expressly designed to offer a generic approach to

address the presence of this bias.

The ‘LCV’ estimator is similar to ‘Lasso’ and ‘PL’ in that it applies oracle-style infer-

ence after selecting a model from the data. The difference is that cross-validation tends to

produce penalty parameters that are much smaller than the theoretically motivated values

used in ‘Lasso’ and ‘PL’. This reduction in the penalty parameter allows extra variables to

enter the model relative to the case where the larger penalty parameters are used. In this

sense, such a procedure can also be thought of as an undersmoothing procedure, though the

“undersmoothing” is targeted toward model fit.22 In these simulations, we see that LCV

tends to produce estimates of the regression coefficient and individual-specific treatment

22[27] demonstrates that cross-validation may produce estimates with slower than optimal convergence

rates with models that are much too complex in the sense that ŝ� s0.
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effect with bias similar to that obtained with lasso and PL, though LCV also tends to

have a larger standard deviation than these estimators as well. The similar bias and larger

standard deviation results in LCV tending to be outperformed in terms of RMSE for these

objects but also results in better coverage properties of the LCV intervals than the lasso or

PL intervals - though LCV coverage still tends to be far from the nominal level.23 For the

profit differential, LCV is less-biased than lasso in all cases and less-biased than PL in four

of six cases while generally having similar standard deviation. Thus, LCV is competitive in

terms of RMSE for this object. However, sufficient bias remains for confidence intervals to

remain substantively distorted, producing coverage probabilities for the profit differential

that range between 0.63 and 0.90.

In many studies, the object of interest is an inherently low-dimensional parameter, such

as a single regression coefficient or an average treatment effect, and semi-parametric estima-

tion can be designed that specifically targets this low-dimensional parameter of interest.24

This approach is adopted in the high-dimensional linear model setting in [13], [49] and [56]

for estimating a single regression coefficient of interest. For regression coefficients, these pro-

cedures are
√
n-consistent and semi-parametrically efficient within the model considered in

the simulation. They also theoretically deliver uniformly valid inference over large classes

of models which include cases where perfect model selection is theoretically impossible. In

terms of our simulations, this approach does relatively well in the s0 = 4 case, delivering per-

formance which is comparable to the infeasible oracle. However, in the s0 = 8 and s0 = 16

cases, the point estimator has a large bias which translates into relatively poor coverage

properties.25

The ‘ZB’ method does not achieve 95% coverage for the regression coefficient ζ0,1 in any

of the simulation designs considered here (with coverages ranging from 73% to 83%). The

ZB method gives better coverage probabilities for the individual treatment effect with near

or above 95% coverage in all simulation designs. The lengths of the ZB confidence intervals

grow considerably with the underlying value of s0. For instance, in the p = 202, s0 = 4 case,

the mean ZB interval length is 3.41 while the ‘True’ mean interval length of 0.88; in the

p = 202, s0 = 16 case, the mean ZB interval length is 56.53 while the ‘True’ mean interval

length of 1.41.

We now look at intervals constructed using the targeted undersmoothing approach. Note

that we take the initial model to be that underlying PL in these simulations, and, for point

estimation, one could use these PL point estimates. The point of targeted undersmoothing

is to provide valid inferential statements allowing for model selection mistakes in producing

this initial model and corresponding point estimates. An interesting feature of the presented

simulations is that TU(1) achieves nearly correct coverage uniformly across the simulation

23Exceptions are coverage of the individual specific treatment effect in Tables Sim1, Sim2, Sim4, Sim5.
24See, for example, [15], [52], [43], [51] for classic examples. [22] provide a recent treatment in a high-

dimensional setting.
25The behavior may be improved by considering double machine learning as defined in [22], which relies

on weaker sparsity conditions than [13]. We note that targeted undersmoothing offers an approach to gauging

the sensitivity of conclusions to model selection mistakes and could be applied directly to semiparametric

targets using orthogonal estimating equations as in [13] or [22]. We do not pursue this direction further in

this paper for brevity.



C. Hansen, D. Kozbur and S. Misra / Targeted Undersmoothing 31

designs - achieving higher than 90% coverage in every design. While not reported in the

table, we also have that TU(2) achieves higher than 95% coverages in all cases. We do see

the inherent conservativeness in sensitivity analysis considering a large class of models in

that TU(10) uniformly has coverage greater than 95%, with coverage of 100% in most cases.

Importantly, the good coverage properties are uniform across all designs and all parameters

considered. Unsurprisingly, this robustness comes with a cost. As must be the case, the

intervals produced by the targeted undersmoothing approach are relatively wide and become

wider as one allows for more selection mistakes. However, the losses relative to the infeasible

optimum are modest for small s̄ and that the intervals are still potentially informative even

in the most extreme case we consider.

Overall, we believe these results are favorable to the targeted undersmoothing approach.

Of the considered feasible alternatives, it is the only procedure that produces uniformly

good coverage properties, at the cost of increased imprecision about what conclusions can be

drawn from the data. This increase in imprecision seems honest as it reflects the potential for

substantive biases resulting from model selection mistakes. The procedure is also anchored

on initial point estimates that have relatively good properties for estimating the parameters

of interest.

6. Conclusion

In this paper, we have considered post model selection inference for a large class of function-

als of the underlying model. Our procedure provides valid confidence sets while handling

the possibility that a misspecified model was selected. We show that these methods perform

well in a simulation study. We illustrate their use in estimating the profit differential for

a fixed coupon-mailing strategy and in estimating heterogeneous treatment effects in data

from a job training experiment.

Appendix 1. Implementation Details

This appendix describes the model selection procedure implemented in several sections of

the paper. Recall that the general model estimated is given by

yi = x′iβ0 + (di · xi)′γ0 + εi.

The procedure for selecting Ŝ0 is as follows.

Algorithm A1. Initial model selection in heterogeneous effects linear model.

Step 1. Divide the sample into two sets: A0 = {i : di = 0} and A1 = {i : di = 1}.
Step 2. Within each sample, demean the observations.

Step 3. Using the demeaned observations, run the modified heteroskedastic lasso regression

(described below in Algorithm 2) of yi on xi over subset A0 and let Ŝ0,0 be the set of

covariates selected. Again using the demeaned observations, run the modified heteroskedastic

lasso regression of yi on xi over subset A1 and let Ŝ0,1 be the set of covariates selected.
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Step 4. The final model Ŝ0 consists of the constant term, the main effect of di, the β0

components corresponding to covariate indexes in Ŝ0,0 ∪ Ŝ0,1, and the interaction terms (γ0

terms) corresponding to covariate indexes in Ŝ0,0 ∪ Ŝ0,1.

Algorithm A2. Modified Heteroskedastic Lasso: Marginal Correlation-Based Initial Penalty

Loadings. The modified heteroskedastic lasso is identical to [9] with a small modification.

[9] relies on ‘initial penalty loadings,’ which require initial estimates of individual specific

residuals. To obtain initial estimates of residuals, einitiali , we regress yi on the 5 covariates

with the highest marginal correlation with yi and use the resulting residuals. This approach

can be shown to be formally valid when the number of covariates with high marginal corre-

lations to yi used is bounded by a constant which does not depend on n. In contrast, note

that [9] suggest einitiali = yi− ȳ. Finally, the penalty loadings are updated with one iteration

as described in [9].
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[52] A.W̃. van der Vaart and J.Ã. Wellner. Weak Convergence and Empirical Processes.

Springer Series in Statistics, 1996.

[53] S. Wager and S. Athey. Estimation and Inference of Heterogeneous Treatment Effects

using Random Forests. ArXiv e-prints, October 2015.

[54] Hansheng Wang. Forward regression for ultra-high dimensional variable screening.

Journal of the American Statistical Association, 104:488:1512–1524, 2009.

[55] Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a di-

rect test for heteroskedasticity. Econometrica, 48(4):817–838, 1980.

[56] Cun-Hui Zhang and Stephanie S. Zhang. Confidence intervals for low dimensional

parameters in high dimensional linear models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 76(1):217–242, 2014.

[57] Tong Zhang. On the consistency of feature selection using greedy least squares. Journal

of Machine Learning, 10:555–568, 2009.

[58] Y. Zhu and J. Bradic. Linear Hypothesis Testing in Dense High-Dimensional Linear

Models. ArXiv e-prints, October 2016.

[59] Y. Zhu and J. Bradic. A projection pursuit framework for testing general high-

dimensional hypothesis. ArXiv e-prints, May 2017.

[60] H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical

Association, 101:1418–1429, 2006.



C. Hansen, D. Kozbur and S. Misra / Targeted Undersmoothing 36

Table Sim1. Simulation Results: n = 400, p = 202, s0 = 4

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias 0.04 0.05 0.09 -0.13 -0.19 -0.33
Std. Dev. 0.68 0.79 0.62 0.11 0.37 0.58
RMSE 0.68 0.79 0.63 0.16 0.41 0.66
Coverage 0.91 0.91 0.93 0.14 0.10 0.54 0.76 0.93 0.97
Int. Length 2.46 2.70 2.26 0.28 0.33 1.42 0.98 1.97 3.86

B. TE
Bias 0.01 -0.00 0.27 -0.01 -0.00
Std. Dev. 0.24 1.57 0.15 0.30 0.35
RMSE 0.25 1.57 0.31 0.30 0.35
Coverage 0.91 0.94 0.56 0.76 0.94 0.95 0.98 1.00
Int. Length 0.88 5.74 0.67 0.65 1.49 3.41 1.76 5.44

C. PI
Bias 0.01 0.32 -0.14 -0.01 -0.05
Std. Dev. 0.06 0.07 0.01 0.08 0.06
RMSE 0.06 0.33 0.14 0.08 0.08
Coverage 0.95 0.00 0.06 0.81 0.82 0.94 1.00
Int. Length 0.26 0.27 0.02 0.22 0.22 0.30 0.45

Fig Sim1. Simulation Results: n = 400, p = 202, s0 = 4
,
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Table Sim2. Simulation Results: n = 400, p = 202, s0 = 8

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias 0.04 0.01 0.84 -0.09 -0.08 -0.14
Std. Dev. 0.63 0.74 0.67 0.02 0.18 0.55
RMSE 0.63 0.74 1.07 0.09 0.19 0.57
Coverage 0.94 0.92 0.67 0.02 0.01 0.64 0.79 0.99 1.00
Int. Length 2.25 2.61 2.33 0.04 0.03 1.51 1.22 2.12 4.25

B. TE
Bias 0.02 0.01 0.12 0.13 0.13
Std. Dev. 0.21 1.57 0.12 0.27 0.45
RMSE 0.21 1.57 0.17 0.30 0.47
Coverage 0.94 0.92 0.87 0.76 0.97 0.91 0.99 1.00
Int. Length 0.78 5.79 0.56 0.58 1.88 19.57 2.16 6.72

C. PI
Bias 0.02 0.31 -0.09 -0.07 -0.02
Std. Dev. 0.10 0.10 0.11 0.11 0.11
RMSE 0.10 0.33 0.14 0.13 0.11
Coverage 0.95 0.06 0.86 0.87 0.90 0.95 1.00
Int. Length 0.40 0.36 0.44 0.43 0.39 0.50 0.74

Fig Sim2. Simulation Results: n = 400, p = 202, s0 = 8
,
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Table Sim3. Simulation Results: n = 400, p = 202, s0 = 16

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias 0.05 0.04 0.46 -0.07 -0.07 -0.12
Std. Dev. 0.57 0.71 0.56 0.00 0.04 0.37
RMSE 0.58 0.71 0.73 0.07 0.08 0.39
Coverage 0.92 0.92 0.82 0.00 0.00 0.47 0.83 0.99 1.00
Int. Length 2.04 2.44 2.05 0.00 0.01 0.85 1.50 1.36 3.86

B. TE
Bias 0.03 -0.04 -0.38 -0.51 -0.52
Std. Dev. 0.41 1.60 0.15 0.32 0.45
RMSE 0.41 1.60 0.41 0.60 0.69
Coverage 0.91 0.92 0.26 0.14 0.73 0.92 0.91 1.00
Int. Length 1.41 5.73 0.62 0.60 1.83 56.53 2.28 6.84

C. PI
Bias 0.04 0.34 -0.12 -0.08 -0.03
Std. Dev. 0.06 0.08 0.01 0.06 0.07
RMSE 0.07 0.35 0.12 0.10 0.07
Coverage 0.94 0.00 0.07 0.44 0.74 0.94 1.00
Int. Length 0.25 0.29 0.02 0.12 0.19 0.32 0.54

Fig Sim3. Simulation Results: n = 400, p = 202, s0 = 16
,
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Table Sim4. Simulation Results: n = 400, p = 602, s0 = 4

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias -0.04 0.04 -0.12 -0.19 -0.44
Std. Dev. 0.69 0.64 0.12 0.38 0.47
RMSE 0.69 0.64 0.17 0.42 0.65
Coverage 0.92 0.92 0.12 0.08 0.42 0.76 0.91 0.96
Int. Length 2.43 2.22 0.23 0.28 1.09 1.01 1.86 4.21

B. TE
Bias -0.01 0.26 -0.03 -0.07
Std. Dev. 0.24 0.15 0.29 0.34
RMSE 0.24 0.30 0.29 0.35
Coverage 0.94 0.60 0.76 0.98 0.91 0.99 1.00
Int. Length 0.87 0.67 0.63 1.86 2.21 2.12 7.92

C. PI
Bias 0.00 -0.14 -0.02 -0.07
Std. Dev. 0.07 0.01 0.08 0.06
RMSE 0.07 0.14 0.09 0.09
Coverage 0.94 0.04 0.77 0.72 0.92 1.00
Int. Length 0.26 0.02 0.21 0.21 0.30 0.52

Fig Sim4. Simulation Results: n = 400, p = 602, s0 = 4
,



C. Hansen, D. Kozbur and S. Misra / Targeted Undersmoothing 40

Table Sim5. Simulation Results: n = 400, p = 602, s0 = 8

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias -0.03 0.78 -0.09 -0.08 -0.15
Std. Dev. 0.65 0.68 0.01 0.12 0.43
RMSE 0.65 1.03 0.09 0.15 0.45
Coverage 0.93 0.72 0.02 0.01 0.55 0.77 1.00 1.00
Int. Length 2.25 2.34 0.02 0.03 1.13 1.26 2.04 4.68

B. TE
Bias -0.01 0.11 0.13 0.15
Std. Dev. 0.22 0.12 0.25 0.44
RMSE 0.22 0.17 0.28 0.46
Coverage 0.93 0.87 0.74 0.99 0.98 1.00 1.00
Int. Length 0.77 0.56 0.58 2.27 24.82 2.66 9.98

C. PI
Bias 0.01 -0.09 -0.08 -0.04
Std. Dev. 0.10 0.11 0.11 0.11
RMSE 0.10 0.15 0.13 0.12
Coverage 0.95 0.85 0.88 0.89 0.95 1.00
Int. Length 0.40 0.44 0.43 0.40 0.51 0.85

Fig Sim5. Simulation Results: n = 400, p = 602, s0 = 8
,
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Table Sim6. Simulation Results: n = 400, p = 602, s0 = 16

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias -0.02 0.40 -0.06 -0.06 -0.10
Std. Dev. 0.55 0.54 0.00 0.00 0.22
RMSE 0.55 0.67 0.06 0.06 0.24
Coverage 0.94 0.88 0.00 0.00 0.35 0.73 0.98 0.99
Int. Length 2.01 2.04 0.00 0.00 0.50 1.60 1.33 4.15

B. TE
Bias 0.00 -0.38 -0.51 -0.70
Std. Dev. 0.39 0.14 0.30 0.41
RMSE 0.39 0.41 0.60 0.81
Coverage 0.93 0.26 0.17 0.77 0.97 0.94 1.00
Int. Length 1.36 0.63 0.60 2.19 71.83 2.76 9.97

C. PI
Bias 0.04 -0.12 -0.08 -0.06
Std. Dev. 0.06 0.01 0.05 0.06
RMSE 0.07 0.12 0.10 0.08
Coverage 0.93 0.05 0.40 0.63 0.93 1.00
Int. Length 0.24 0.02 0.12 0.19 0.33 0.61

Fig Sim6. Simulation Results: n = 400, p = 602, s0 = 16
,
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