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1 Introduction

The generalized method of moments (GMM, Hansen, 1982) is one of the most widely applied
methods in econometrics. In the effi cient GMM method, a feasible two-step estimator requires a
consistent estimate of the variance—covariance matrix to weight the moment conditions. In the
estimation of the weight matrix, the moment process is unobservable and has to be approximated
by plugging an initial GMM estimator into the moment function. Windmeijer (2005) points out
that the estimation uncertainty from the plugged-in estimator contributes to the finite-sample
variability of the feasible two-step GMM estimator. He shows that the extra variation generated
by the estimated weight matrix explains much of the difference between the estimated asymptotic
variance and the actual finite-sample variance of the GMM estimator. Windmeijer (2005) also
proposes a finite-sample bias-corrected variance formula, which corrects for the bias arising from
the estimated effi cient weight matrix. Windmeijer’s (2005) corrected variance formula has been
popularly used in a wide variety of econometric models with high impact (Roodman (2009),
Brown et al. (2009), Oberholzer-Gee and Strumpf (2007), and many others).

A fundamental assumption in Windmeijer (2005) is that the moment process is independent
and identically distributed (i.i.d.). For time-series data, which is the focus of our paper, the i.i.d.
assumption in Windmeijer (2005) renders his corrected variance formula inapplicable. This is
because the GMM weighting matrix in time series is no longer a simple average of the estimated
moment process. Instead, we need to consider the weight matrix as the long-run variance (LRV)
of the true moment process, which is usually estimated by a non-parametric kernel or a series
method. Because of the non-parametric nature of the LRV estimator, in a time-series, the two-
step GMM estimator is exposed to even higher variation from the estimated weight matrix.
Consequently, the standard asymptotic variance formula without a finite-sample correction is
severely biased, and the associated GMM tests suffer from excessive size distortions.

In this paper, we develop a finite-sample corrected and heteroskedasticity autocorrelated ro-
bust (HAR) inference for the effi cient GMM method in the time-series setting. By explicitly
considering the non-parametric LRV estimator, our finite-sample corrected variance formula ex-
tends Windmeijer’s (2005) formula to the case of non-i.i.d. Since our corrected variance formula
is designed to take into account the extra variation due to the plugged-in estimation of the LRV,
it leads to a less biased estimate of the actual finite-sample variance of the GMM estimator. The
key step of our approximation is that instead of eliminating the estimation uncertainty of the ini-
tial estimator, which is of small stochastic order of magnitude, we explicitly derive the associated
small-order terms and use them to construct the finite-sample corrected variance formula. This
paper formally shows that the finite-sample corrected variance can be consistently estimated. In
addition, we show that this consistency does not depend on whether the smoothing parameter in
the LRV estimator is fixed or is increasing with respect to the sample size.

With our finite-sample corrected variance estimator, we construct t and Wald statistics for
the testing problem. To derive the asymptotic distributions of the finite-sample corrected sta-
tistics, we employ an alternative type of asymptotics from the HAR literature, which is called
“fixed-smoothing asymptotics”. In the context of the effi cient two-step GMM, Sun (2014b) and
Hwang and Sun (2017) show that the alternative asymptotics yields more accurate approxima-
tions. Although their fixed-smoothing asymptotics captures the variance of the non-parametric
LRV estimator, it ignores the finite-sample bias of LRV estimation. By correcting for the small-
order bias of the plugged-in LRV estimator, this paper provides an improved fixed-smoothing
asymptotic theory. Together with the finite-sample corrected variance formula, we derive stan-
dard t and F limiting distributions for our proposed test statistics, which provides a convenient
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solution to the effi cient GMM inference problem for finite samples.
This paper also provides an analytical expansion of the continuously updating (CU) GMM

estimator proposed by Hansen et al. (1996) and compares it to our finite-sample corrected two-
step GMMmethod. Our result indicates that the Wald inference in CU-GMM, using the standard
sandwich variance formula, cannot reflect potentially large finite-sample variations embodied in
the non-linear CU estimation. In contrast, our proposed GMM method does not involve the
non-linearity in the CU-GMM estimation and instead uses the corrected variance formula that
explicitly considers the finite-sample uncertainties in the estimated optimal weighting matrix.
Also, via Monte Carlo simulations, we numerically compare the performance of the corrected
two-step GMM test to that of the uncorrected CU-GMM test and show that the inferences
drawn from our proposed GMM outperform those drawn from the CU-GMM on finite samples.

Our asymptotic framework is pointwise and can suffer from size distortion when the temporal
dependence is strong (e.g., Müller (2014)). Preinerstorfer and Pötscher (2016) and Pötscher and
Preinerstorfer (2018, 2019) point out that the size-distortion problem applies to any pointwise
HAR test and provides the conditions under which the size of HAR tests is controlled. Similar
problems can arise when there is weak identification (e.g., Stock and Wright (2000) and Guggen-
berger and Smith (2005)). The results of our Monte Carlo simulations show that our proposed
finite-sample corrected GMM inference still performs better than the uncorrected version in these
scenarios, by significantly reducing the size distortion.

Different approaches to the effi cient GMM inference problem have been proposed in the
literature. A bootstrap approach for GMM is developed in Hall and Horowitz (1996), Brown and
Newey (2002), and Lee (2014), and numerical evidence of the finite-sample performance of the
asymptotic and bootstrapped GMM tests is provided in Bond and Windmeijer (2005). Hwang et
al. (2020) point out a connection between the finite-sample corrected variance formula and the
misspecification-robust asymptotic variance formula. However, all these papers impose the i.i.d.
assumption or restriction on the form of the time-series dependence. Newey and Smith (2004)
and Anatolyev (2005) analyze higher-order properties for various classes of GMM estimators,
including CU-GMM, but they mainly focus on point-estimation which differs from the testing
problem considered in this paper. Hwang (2021) provides a finite-sample corrected inference
for linear GMM in the presence of clustered dependence, but that formulation of the GMM
weight matrix is a cluster-robust variance estimator which is applicable only to a specific form of
clustered (or grouped) dependence structure.

This paper contributes to the literature by providing a comprehensive treatment of finite-
sample corrected GMM methods in the presence of unknown forms of time-series dependence,
which include both increasing and fixed-smoothing asymptotics, and finite-sample corrections for
linear and non-linear moment conditions. Also, we note that using a deflated variance estimate
after Windmeijer’s correction in testing can end up with a greater chance of falsely rejecting
the null hypothesis than using the standard (uncorrected) sandwich variance estimate. This is
because the Windmeijer correction requires estimating the smaller-order correction term whose
estimation uncertainty is of the same order as the true correction term. To overcome this problem,
we provide additional adjustments on top of Windmeijer’s formula, which makes our new formula
is not exposed to Windmeijer’s formula’s side effect. The adjustments first compute the spec-
tral decomposition of the difference between the corrected and uncorrected variance—covariance
matrices and adjust the eigenvalues of the difference matrix to be non-negative.

The literature in HAR inference was pioneered by Kiefer and Vogelsang (2002, 2005), Phillips
(2005), Müller (2007), and Sun et al. (2008). The HAR literature develops a new type of
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asymptotics that assumes that the smoothing parameter is fixed when the sample size grows.
This tool is called fixed-b asymptotics in Kiefer and Vogelsang (2002, 2005) and, with more
inclusive implications in both the kernel and OS LRV estimators, it is called fixed-smoothing
asymptotics in Sun (2014 a&b). Recent research along this line can be found in Sun (2014 a&b),
Müller and Watson (2018), Lazarus et al. (2019), and Martínez-Iriarte et al. (2020).

In a two-step GMM model, one can consider alternative testing-oriented selections of band-
width (smoothing) parameters for HAR inference, as in Sun and Phillips (2009). However, their
bandwidth formula is designed for kernel LRV, so it cannot be applied to the orthonormal series
LRV estimator implemented in our proposed finite-sample corrected HAR inference. Also, the
testing-oriented smoothing parameter does not always perform much better than the usual mean
squared error (MSE)-optimal smoothing parameter choice (e.g., Sun and Phillips (2009) and Sun
(2013)). The reason is that there is considerable estimation uncertainty in estimating the theo-
retically optimal smoothing parameter. For this reason, this paper opts for the more familiar and
widely used MSE-optimal smoothing parameter in this paper, together with the finite-sample
corrected variance formula.

The rest of the paper is organized as follows. Section 2 describes the two-step GMM problem
in a time-series setting and explores the idea of the finite-sample correction in time-series two-step
GMM. Section 3 establishes asymptotic distributions for the test statistics using the corrected
variance formula. Section 4 presents analysis of the finite-sample distribution of the CU-GMM
and compare it to the finite-sample corrected GMM. Section 5 presents Monte Carlo simulation
results, and Section 6 concludes. Proofs of the main results are given in Appendix A, and Online
Appendix B contains closed-form formulas for the non-linear moment case and for iterated GMM,
as well as an IV regression example and proofs that are not given in Appendix A.

2 Finite-Sample Corrected GMM in Time Series

We want to estimate a d-component vector of parameters θ ∈ Θ using a vector of observations
vt ∈ Rdv at time t. The true parameter θ0 is assumed to be an interior point of Θ. The moment
condition is given by

E[f(vt, θ)] = 0 if and only if θ = θ0,

where f(vt, ·) is an m-component vector of twice continuously differentiable functions, and the
process f(vt, θ0) is stationary with zero mean. We allow f(vt, θ0) to have general autocorrelation
of unknown form, and we require it to satisfy

∑∞
j=−∞ ‖E[f(vt, θ0)f(vt−j , θ0)′]‖ < ∞ and some

mixing conditions so that the time-series functional central limit theorem (FCLT) holds:

1√
T

[T ·]∑
t=1

f(vt, θ0)
d→ ΛB(·), (1)

where B(·) is an m-dimensional standard Brownian motion. Ω = ΛΛ′ is an m × m strictly
positive definite long-run variance (LRV) of the moment process f(vt, θ0) which is defined as
Ω =

∑∞
j=−∞E[f(vt, θ0)f(vt−j , θ0)]. Also, we assume that q = m − d > 0, so the model is

overidentified with degree of over-identificaion q. G(θ0) = E[∂f(vt, θ0)/∂θ′] is assumed to have
full column rank.

Let fT (θ) = T−1
∑T

s=1 f(vs, θ) and M(θ, ST (θ̂1)) = fT (θ)′S−1
T (θ̂1)fT (θ). The feasible effi cient

two-step GMM estimator in Hansen(1982) is defined as

θ̂2 = arg min
θ∈Θ

M(θ, ST (θ̂1)),
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where ST (θ) is an m×m two-step GMM weight matrix defined as

ST (θ) =
1

T

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)
(f(vt, θ)− fT (θ))(f(vs, θ)− fT (θ))′.

In the two-step GMM weight matrix, θ̂1 is the one-step (initial) GMM estimator which minimizes
the quadratic form in the sample moments, but its weight matrix W−1

T does not depend on the
unknown parameter value θ0. We assume that p limT→∞WT = W.

By construction, ST (θ̂1) is a quadratic heteroskedasticity autocorrelation robust (HAR) esti-
mator for Ω which uses a symmetric weighting function, Qh(t/T, s/T ), with smoothing parameter
h. For conventional kernel LRV estimators, with Qh (r, s) = k ((r − s) /b) , we take h = 1/b. For
orthonormal series (OS) LRV estimators with Qh (r, s) = K−1

∑K
j=1 Φj(r)Φj(s), we take h = K,

where {Φj (r)} is a set of orthonormal basis functions on L2[0, 1] satisfying
∫ 1

0 Φj (r) dr = 0.
We parametrize h in such a way that h indicates the level of smoothing for both types of LRV
estimators.

Note that we use a “centered”version of the LRV estimator, ST (θ̂1), which is based on the
estimation of the demeaned moment process f(vt, θ̂1) − fT (θ̂1). The demeaned procedure plays
an advantageous role in our finite-sample corrected GMM tests because it allows the denominator
of the test statistics (the finite-sample corrected variance) to be asymptotically independent of
the numerator (the sample moments).

To understand the asymptotic approximation of θ̂2, we look at the first-order condition (FOC)
for θ̂2 given by

1

2

∂M(θ, ST (θ̂1))

∂θ

∣∣∣∣∣
θ=θ̂2

= GT (θ̂2)′S−1
T (θ̂1)fT (θ̂2) = 0, (2)

where GT (θ̂2) = T−1
∑T

t=1 ∂f(vt, θ)/∂θ
′|θ=θ̂2 . A first-order approximation to characterize the

distribution of θ̂2 can be constructed as follows. First, conditioning on ST (θ̂1), we do a Taylor
expansion of the FOC in (2):

0 =
1

2

∂M(θ, ST (θ̂1))

∂θ

∣∣∣∣∣
θ=θ̂2

= GT (θ0)′S−1
T (θ̂1)fT (θ0) +A(θ0, ST (θ̂1))(θ̂2 − θ0) +Op

(
1

T

)
, (3)

where A(θ0, ST (θ̂1)) is the matrix of second-order derivatives of M(θ, ST (θ̂1)) at θ = θ0, and
HT (θ) ∈ Rdm×d is the matrix of second-order derivatives of the moment process. The closed-
form expressions for A(θ0, ST (θ̂1)) and HT (θ) are provided in Online Appendix B.1. Using the
Taylor expansion of the FOC in (3), we can expand

√
T (θ̂2 − θ0) as

√
T (θ̂2 − θ0) = −

[
A(θ0, ST (θ̂1))

]−1
GT (θ0)′S−1

T (θ̂1)
√
TfT (θ0) +Op

(
1√
T

)
, (4)

assuming A(θ0, ST (θ̂1)) is invertible.
For simplicity of exposition, we illustrate the main idea of our finite-sample correction by

assuming that the moment conditions are linear in the parameter θ. This linearity assumption
leads us to focus solely on the estimation uncertainty of the plugged-in estimator, ST (θ̂1), which
is the primary motivation of the finite-sample corrected GMM in Windmeijer (2005). The for-
mulation of the finite-sample correction in the non-linear case is analogous, and it is provided in
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Online Appendix B.1. Because of the linearity, the term A(θ̂2, ST (θ̂1)) is equal to G′TS
−1
T (θ̂1)GT ,

and the higher-order approximation error term Op(T
−1/2) in (4) is dropped, hence we have that

√
T (θ̂2 − θ0) = −(G′TS

−1
T (θ̂1)GT )−1G′TS

−1
T (θ̂1)

√
TfT (θ0). (5)

Under (1) and Assumptions 1—3 introduced in Section 3, we can apply Lemma 1 in Sun (2014b),
for any

√
T -consistent estimator θ̂, to obtain

ST (θ̂) = ST (θ0) + op(1). (6)

Using this result, we can approximate (5) as
√
T (θ̂2 − θ0) = −(G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)︸ ︷︷ ︸

=
√
T(θ̃2−θ0)

+ op(1). (7)

Any standard approximation of the two-step GMM estimator
√
T (θ̂2 − θ0) is based on the first

term in (7), which is the infeasible transformed moment condition. This term actually coincides
with the first-order expansion of the infeasible two-step GMM estimator

√
T (θ̃2 − θ0) that uses

the true parameter θ0 to evaluate the weight matrix, S−1
T (θ). Thus

√
T (θ̂2−θ0) is asymptotically

equivalent to
√
T (θ̃2 − θ0), and this implies that the estimation uncertainty of the initial one-

step estimator θ̂1 in
√
T (θ̂2 − θ0) is ignored for the existing asymptotic analysis, including the

fixed-smoothing asymptotics in Sun (2014b) and Hwang and Sun (2017).
However, Windmeijer (2005) points out that the extra variation in

√
T (θ̂2 − θ0) due to θ̂1

can explain much of the difference in the finite-sample behavior of
√
T (θ̂2 − θ0) and

√
T (θ̃2 − θ0).

By estimating the term op(1) in (7), a finite-sample corrected variance estimate is obtained.
Windmeijer (2005) shows that his corrected variance estimate approximates the true finite-sample
variance well and leads to a more accurate result in hypothesis testing. Windmeijer (2005)
assumes that the moment process f(vt, θ0) is i.i.d., but his idea of a corrected variance estimate
can be accommodated to our time-series setup. In doing so, the key step is that instead of
eliminating the estimation uncertainty of θ̂1 in (5), we further approximate

√
T (θ̂2−θ0) in equation

(5) by a Taylor expansion, as a function of θ̂1, in the estimated weight matrix ST (θ̂1) as follows:

√
T (θ̂2 − θ0) = − (G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) (8)

+D(θ0, ST (θ0))
√
T (θ̂1 − θ0) + op

(
1√
T

)
,

where

D(θ0, ST (θ0)) =
∂ − (G′TS

−1
T (θ)GT )−1G′TS

−1
T (θ)fT (θ0)

∂θ′

∣∣∣∣∣
θ=θ0

= Op

(
1√
T

)
is a d×dmatrix. Using element-by-element differentiation of the d-component vector−(G′TS

−1
T (θ)GT )−1

G′TS
−1
T (θ)

√
TfT (θ0) with respect to θj for j ∈ {1, . . . , d}, we can express the j-th column of

Dθ0,ST (θ0) as

D(θ0, ST (θ0))[., j] =− (G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

(9)

× S−1
T (θ0)GT (G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)fT (θ0)

+ (G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

S−1
T (θ0)fT (θ0),
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where ∂ST (θ)/∂θj = Υj(θ) + Υ′j(θ) for j ∈ {1, . . . , d},

Υj(θ) =
1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)

(
gj(vs, θ)−

1

T

T∑
s=1

gj(vs, θ)

)(
f(vt, θ0)− 1

T

T∑
s=1

f(vs, θ)

)′
, (10)

and gj(vs, θ) = ∂f(vs, θ)/∂θj . The expansion in (8) shows that the correction termD(θ0, ST (θ0))
√
T (θ̂1−

θ0) = Op(T
−1/2) vanishes when the sample size T increases, but it is always non-zero in finite

samples. Therefore, we can improve the approximation of the variance of θ̂2 in finite samples by
taking the correction term into account.

3 Asymptotics for Finite-Sample Corrected Statistics

3.1 Formulation of finite-sample corrected variance

The idea of finite-sample corrected variance estimate starts by assuming that the distribution of
ST (θ0) is approximated by the true population counterpart Ω. In time series, the approximation
is based on the conventional increasing-smoothing asymptotics which considers h→∞ as T →∞
such that h/T → 0, (e.g., Andrews (1991) and Sun (2013, 2014a)). Since ST (θ0) is treated as a
consistent estimator of Ω, together with the CLT assumption in (1), the termG′TS

−1
T (θ0)

√
TfT (θ0)

converges in distribution to N(0, G′Ω−1G).
To formulate a finite-sample corrected variance estimator, we use a∼ to denote a notion of

asymptotic equivalence in distribution. That is, ξT
a∼ ηT indicates that ξT and ηT share the same

weak limits for two stochastically bounded sequences of random vectors ξT and ηT . Keeping
Windmeijer’s correction term D̃(θ0, ST (θ0)) in (8), the asymptotically equivalent representation
for (8) is given as

√
T (θ̂2 − θ0)

a∼ −
(

(G′Ω−1G)−1, D̃(θ0, ST (θ0))(G′W−1G)−1
)( G′Ω−1ΛZ

G′W−1ΛZ

)
,

where Z ∼ N(0, Im), D̃(θ0, ST (θ0)) is a d × d random matrix which joins the same marginal
distribution as that of D(θ0, ST (θ0)), and Z ⊥ D̃(θ0, ST (θ0)). Conditioning on D̃(θ0, ST (θ0)), the
sum of two normal distributions can be represented as a normal distribution as well. Thus we
can obtain a normal representation, N (0,ΞT ) , of the approximated distribution of

√
T (θ̂2 − θ0),

whose variance—covariance matrix, ΞT := ΞT (θ0, ST (θ0)), is given by

ΞT =
(
G′Ω−1G

)−1
+ D̃(θ0, ST (θ0))

(
G′Ω−1G

)−1
+
(
G′Ω−1G

)−1
D̃(θ0, ST (θ0))′

+ D̃(θ0, ST (θ0))(G′W−1G)−1
(
G′W−1ΩW−1G

)
(G′W−1G)−1D̃(θ0, ST (θ0))′.

Motivated by this, the corrected variance estimate is given as v̂arc(θ̂2) = Ξ̂T (θ̂2, ST (θ̂1)), where

Ξ̂T (θ̂2, ST (θ̂1)) = v̂ar(θ̂2) +D(θ̂2, ST (θ̂1))v̂ar(θ̂2) + v̂ar(θ̂2)D(θ̂2, ST (θ̂1))′ (11)

+D(θ̂2, ST (θ̂1))v̂ar(θ̂1)D(θ̂2, ST (θ̂1))′,

v̂ar(θ̂1) and v̂ar(θ̂2) are the standard GMM variance estimates, that is,

v̂ar(θ̂1) =
1

T

(
G′TW

−1
T GT

)−1
(
G′TW

−1
T ST (θ̂1)W−1

T GT

) (
G′TW

−1
T GT

)−1
,

v̂ar(θ̂2) =
1

T
(G′TS

−1
T (θ̂1)GT )−1,
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and

D(θ̂2, ST (θ̂1))[., j] = (G′TS
−1
T (θ̂1)GT )−1G′TS

−1
T (θ̂1)

(
Υj(θ̂1) + Υ′j(θ̂1)

)
S−1
T (θ̂1)fT (θ̂2).

Using the FOC, G′TS
−1
T (θ̂1)fT (θ̂2) = 0, hence the first term of D(θ0, ST (θ0))[., j] on the right-

hand side of (9) is always equal to zero in the “estimated” correction term, D(θ̂2, ST (θ̂1))[., j].
The way we construct the corrected variance formula v̂arc(θ̂2) in (11) is in the same spirit as in
Windmeijer (2005), where it is assumed to be an i.i.d. moment vector f(vt, θ0). The difference,
in our setting, is that ST (θ̂1) for us is a HAR estimator of the LRV which is robust to a non-i.i.d.
moment vector f(vt, θ0).

Now suppose we want to test the linear null hypothesis H0 : Rθ0 = r (vs H0 : Rθ0 6= r),
where R is a p× d matrix with rank p ≤ d. Then the Wald test statistic using the finite-sample
corrected variance v̂arc(θ̂2) can be constructed as follows:

Fc(θ̂2) =
1

p
(Rθ̂2 − r)′

[
Rv̂arc(θ̂2)R′

]−1
(Rθ̂2 − r),

whereas the uncorrected Wald statistic using the conventional formula, F (θ̂2), uses the standard
sandwich variance formula v̂ar(θ̂2).1 When p = 1 and for one-sided alternative hypotheses, one
can similarly construct the corresponding finite-sample corrected and uncorrected t statistics as
tc(θ̂2) and t(θ̂2), respectively. We assume the following.

Assumption 1 (i) For kernel LRV estimators, the kernel function k (·) ∈ [−1, 1] satisfies the
following conditions: For any b ∈ (0, 1], kb (x) = k (x/b) is symmetric, continuous, piecewise
monotonic, and piecewise continuously differentiable, and

∫∞
−∞ k

2(x) <∞. (ii) For the OS-LRV
variance estimator, the basis functions Φj (x) are piecewise monotonic, continuously differen-
tiable, and orthonormal in L2[0, 1], and

∫ 1
0 Φj (x) dx = 0.

Assumption 2 As T → ∞, θ̂2 = θ0 + op (1) and θ̂1 = θ0 + op (1) for an interior point θ0 ∈ Θ,
where Θ ⊆ Rd is a parameter space of interest.

Assumption 3 For any θ̂ = θ0+op (1) , G[rT ](θ̂) = T−1
∑[rT ]

t=1
∂f(vt,θ)
∂θ′

∣∣∣
θ=θ̂

= rG+op(1) uniformly

in r, where G = G(θ0) has rank d and G(θ) = E[∂f(vt, θ)/∂θ
′]. When r = 1, we have that

GT (θ̂) = G+Op(T
−1/2).

Assumption 4 For each j ∈ {1, . . . , d} and any θ̂ = θ0 + op (1) , H[rT ],j(θ̂) = rHj + op (1) uni-

formly in r, where H[rT ],j(θ̂) = 1
T

∑[rT ]
t=1

∂gj(vt,θ̂)
∂θ′ and Hj = Hj(θ0) with Hj(θ) = E [∂gj(vt, θ)/∂θ

′] .

When r = 1, we have that HT,j(θ̂) = Hj +Op(T
−1/2).

Assumption 5 For each j ∈ {1, . . . , d}, {gj(vt, θ0)} is a strict stationary process and
∑∞

i=−∞ ||Ψj,i|| <
∞, where Ψj,i = E[gj(vt, θ0)gj(vt−i, θ0)′], and T−1/2

∑[rT ]
t=1 (gj(vt, θ0) − E[gj(vt, θ0)]) satisfies

FCLT.
1 In constructing the Wald statistic, we divide it by the number of hypotheses p, but only because we anticipate

a more convenient F approximation in the next subsection.
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Assumptions 1—3 are standard assumptions in the literature on HAR inference, and they are
similar to those in Sun (2014) and Hwang and Sun (2017, 2018). Assumptions 4 and 5 are needed
to prove the asymptotic validity of the finite-sample corrected variance formula. Assumptions
4 and 5 are not needed to prove our asymptotic theory if the moment conditions are linear in
the parameters, as illustrated in Section 2. For completeness, we keep them to prove Lemma 1
for a more general (non-linear) case in Online Appendix B.1, which includes the linear-moment
condition as a particular case.

Lemma 1 Under Assumptions 1—5, we have

D(θ̂2, ST (θ̂1)) = D(θ0, ST (θ0))(1 + op(1)),

which holds when h is fixed as T →∞, or when (h, T )→∞ such that h/T → 0.

Lemma 1 shows that the small-order term D(θ0, ST (θ0)) which motivates the formulation
of the finite-sample corrected variance estimate is consistently estimated by D(θ̂2, ST (θ̂1)) in a
relative sense. In the proof of Lemma 1, we show that the consistency of the estimated term
D(θ̂2, ST (θ̂1)) does not depend on the smoothing parameter h being fixed as T →∞, or on h→∞
such that h/T → 0. Since the variance correction terms in v̂arc(θ̂2) are of smaller order, the result
of Lemma 1 indicates that the variance-corrected statistics are expected to have the same limiting
distribution as the conventional Wald and t statistics. The following theorem formally states this
result.

Theorem 2 Under Assumptions 1—5, we have that
(a) tc(θ̂2) = t(θ̂2) + op(1);

(b) Fc(θ̂2) = F (θ̂2) + op(1),
where (a) and (b) hold when h→∞ such that h/T → 0, or when h is fixed as T →∞.

Under the increasing-smoothing asymptotics, that is, h → ∞ but h/T → 0, we have that

v̂ar(θ̂2)
p→ (G′Ω−1G)−1, and thus t(θ̂2)

d→ N(0, 1) and F (θ̂2)
d→ χ2

p/p. The results in Theo-
rem 2 justify that the distribution of our finite-sample corrected t and Wald statistics can be
approximated by

tc(θ̂2)
d→ N(0, 1) and Fc(θ̂2)

d→ 1

p
χ2
p,

respectively.

3.2 Fixed-smoothing asymptotics for finite-sample corrected variance

The conventional increasing-smoothing asymptotics is a key device for proving conventional nor-
mal and chi-square approximations of our finite-sample corrected statistics, but it often fails to
reflect finite-sample variations of the non-parametric LRV estimation in time-series data. See,
for example, Kiefer and Vogelsang (2002 a&b, 2005) and Hwang and Sun (2017). To overcome
this problem, we derive a more accurate fixed-smoothing asymptotics for the finite-sample cor-
rected tc(θ̂2) and Fc(θ̂2).We consider LRV estimation using the following orthonormal series (OS)
weighting function:

QK

( r
T
,
s

T

)
=

1

K

K∑
j=1

Φj

( r
T

)
Φj

( s
T

)
,
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where the smoothing parameter h in Qh(r/T, s/T ) is now equal to K ≥ m, which is the
number of orthonormal series functions. The OS-LRV estimator is then defined as ST (θ) =
K−1

∑K
j=1 Uj(θ)Uj(θ)

′, where

Uj (θ) =
1√
T

T∑
t=1

Φj(
t

T
)

[
f(vt, θ)−

1

T

T∑
τ=1

f(vτ , θ)

]

for each j ∈ {1, . . . ,K}. The OS-LRV estimator has gained considerable attention in the recent
HAR literature, (e.g., Phillips (2005), Müller (2007), Sun (2011, 2014b), Lazarus et al. (2018),
and Lazarus et al. (2019)). In this paper, we consider

{Φj (r)}Kj=1 = {Φ2j−1 (r) =
√

2 sin (2πjr) ,Φ2j (r) =
√

2 cos (2πjr) , j = 1, 2, . . . ,K/2}, (12)

where K is an even number. By construction, the OS-LRV becomes an equal-weighted peri-
odogram (EWP) estimator using the first K/2 periodograms (e.g., Sun (2013) and Lazarus et al.
(2019)), which is proportional to an estimator of the scaled spectral density point at zero.

The fixed-smoothing approximation of the OS-LRV, ST (θ̂1), captures the finite-sample vari-
ability of each periodogram by Uj(θ̂1)

a∼ ΛUj for each j ∈ {1, . . . ,K}, where

Uj = T−1/2
T∑
t=1

Φj(
t

T
)

(
et −

1

T

T∑
s=1

es

)

and et
i.i.d.∼ N(0, Im). From the properties of the Fourier basis functions,

∑T
t=1 Φj(

t
T ) = 0 and

T−1
∑T

t=1 Φi(
t
T )Φj(

t
T ) = 1(i 6= j), it is straightforward to show that Uj = 1√

T

∑T
t=1 Φj(

t
T )et

i.i.d.∼
N(0, Im) for j ∈ {1, . . . ,K}. Then, holding K fixed, Sun (2013) shows that the OS-LRV is
approximated by

ST (θ̂1)
a∼ S =

 S11
d×d

S12
d×q

S21
q×d

S22
q×q

 := Λ

 1

K

K∑
j=1

UjU′j

Λ′. (13)

Note that the approximated random variable S ∼ K−1Wp(K, Im) is a scaled Wishart random
matrix with K degrees of freedom. Using this result, Theorem 1 in Sun (2014b) shows that the
standard t and Wald statistics, t(θ̂2) and F (θ̂2), do not depend on any nuisance parameters, and
their limits are represented by

t(θ̂2)
d→ T d

=
Z1 − S12S−1

22 Z2√
S11·2

(14)

and
F (θ̂2)

d→ F d
=

1

p

(
Z1 − S12S−1

22 Z2

)′ S−1
11·2

(
Z1 − S12S−1

22 Z2

)
, (15)

respectively, where Z1 ∼ N(0, Ip), Z2 ∼ N(0, Iq), Z1 ⊥ Z2, and S11·2 = S11 − S12S−1
22 S21.

A natural question is whether tc(θ̂2) and Fc(θ̂2) are asymptotically free of nuisance parame-
ters, including the correction term D(θ̂2, ST (θ̂1)). From the results in Theorem 2, the limiting
distributions of tc(θ̂2) and Fc(θ̂2), under the fixed-smoothing asymptotics, are given by

tc(θ̂2) = t(θ̂2) + op(1)
d→ T and Fc(θ̂2) = F (θ̂2) + op(1)

d→ F,
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respectively. The fixed-K limiting distributions in (14) and (15) are nonstandard. To investigate
further, we use the following well-known properties of the Wishart distribution: S11·2 ∼Wp(K −
p − q + 1, Ip)/G, and S11·2 is independent of S12 and S22. This implies that conditioning on
∆ := S12S−1

22 Z2, the limiting distribution F satisfies

K − p− q + 1

K
F d

=
K − p− q + 1

K

(Z1 + ∆)′S−1
11·2(Z1 + ∆)

p

d
= Fp,K−p−q+1

(
‖∆‖2

)
,

where Fp,K−p−q+1(‖∆‖2) is a noncentral F distribution with random noncentrality parameter
‖∆‖2 . The random noncentrality parameter ∆ is the source of the non-standard limiting distrib-
ution F, and in practice the critical values need to be simulated. With our finite-sample corrected
test statistics, from a practical standpoint it would be more convenient to use a standard F crit-
ical value after we modify the non-standard source in ∆. The modified t and Wald statistics
are

t̃c(θ̂2) =
K − q
K

· tc(θ̂2)√
1 + 1

KJ(θ̂2)
; (16)

F̃c(θ̂2) =
K − p− q + 1

K
· Fc(θ̂2)

1 + 1
KJ(θ̂2)

, (17)

where J(θ̂2) = TfT (θ̂2)′S−1
T (θ̂1)fT (θ̂2) is the standard J statistic for testing the over-identifying

restrictions.

Theorem 3 Under Assumptions 1—5, for a fixed K as T →∞, we have
(a) t̃c(θ̂2)

d→ tK−q;

(b) F̃c(θ̂2)
d→ Fp,K−p−q+1.

Theorem 3 shows that the finite-sample variance corrections in t̃c(θ̂2) and F̃c(θ̂2) do not alter
the standard t and F limiting distributions found in Hwang and Sun (2017). Still, they can help
improve the finite-sample performance of our tests. Compared to the conventional normal and
chi-square approximations, the fixed-smoothing asymptotics in Theorem 3 is expected to lead
to a more accurate inference in testing H0 : Rθ0 = r, because the t and F limits are able to
capture the estimation uncertainty of the non-parametric estimator ST (θ0) from the studentized
HAR statistic. Also, the J-statistic modifications in our statistics can capture the estimation
uncertainty of the two-step GMM estimator θ̂2 arising from the random GMM weight ST (θ0),
and thus remove the random noncentrality parameter ∆ in the limit. Together with the finite-
sample corrected variance formula, the standard t and F limits provide convenient solutions to
the effi cient GMM inference problem for finite samples.

TheWindmeijer correction requires estimating the smaller-order correction term,D(θ0, ST (θ0)),
by D(θ̂2, ST (θ̂1)), and the estimation cost has the same order of magnitude with the true correc-
tion, that is,

D(θ̂2, ST (θ̂1)) = D(θ0, ST (θ0))︸ ︷︷ ︸
=Op

(
1√
T

) +Op

(
1√
T

)
.

The estimation uncertainty can change the corrected variance estimates in an unexpected way in
finite samples, that is, we could obtain v̂arc(θ̂2)− var(θ̂2) < 0. A smaller variance estimate after
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the correction does not necessarily imply that it gets closer to the actual finite-sample variance.
In fact, the deflation of the original (uncorrected) variance estimate after Windmeijer’s correction
can introduce greater risk of committing type-I error in testing problems. Since the motivation
of our corrected variance formula and corresponding t and Wald inferences is to reduce the
excessive size distortion in finite samples, we want to set the gap between v̂arc(θ̂2) and v̂ar(θ̂2) to
be non-negative. Thus we propose to replace v̂arc(θ̂2) by v̂aradjc (θ̂2), where the adjusted variance
correction v̂aradjc (θ̂2) satisfies

v̂aradjc (θ̂2)− v̂ar(θ̂2) ≥ 0.

The adjustment step comes from looking at the matrix RT = v̂arc(θ̂2)− v̂ar(θ̂2), which is a small-
order difference between v̂arc(θ̂2) and v̂ar(θ̂2). After calculating the spectral decomposition of
R̃T = VTLTV

′
T , we replace the negative components of the diagonal eigenvalue matrix LT with

zeros. If we define this new eigenvalue matrix as L̃T , the adjusted version of v̂arc(θ̂2) can be
constructed as

v̂aradjc (θ̂2) = v̂ar(θ̂2) + R̃T where R̃T = VT L̃TV
′
T .

Using v̂aradjc (θ̂2), the corrected t and Wald statistics , t̃adjc (θ̂2) and F̃ adjc (θ̂2), are defined similarly
as in (16) and (17). By construction, the corrected statistics always satisfy

|t̃adjc (θ̂2)| ≤ |t̃(θ̂2)| and F̃ adjc (θ̂2) ≤ F̃ (θ̂2).

Thus the size distortions of t̃adjc (θ̂2) and F̃ adjc (θ̂2) are no greater than the uncorrected t̃(θ̂2) and
F̃ (θ̂2), respectively, in finite samples. Also, Theorem 2 indicates that RT = op(1) and R̃T =

op(1). This further implies that the proposed t̃adjc (θ̂2) and F̃ adjc (θ̂2) are asymptotically t and F
distributed, that is, that

tadjc (θ̂2)
d→ tK−q and F̃ adjc (θ̂2)

d→ Fp,K−p−q+1 (18)

hold under fixed-smoothing asymptotics.
Our eigenvalue adjustments overcome the limitation in Windmeijer’s original method, because

our method compares the difference between the corrected and uncorrected variance estimates
and adjusts the corrected variance to be at least as large as in the original (uncorrected) formula.
By doing so, the resulting test statistic does not produce more size distortion than the uncorrected
test statistic does. The eigenvalue adjustments after the Windmeijer correction guarantee that
we do not over-correct the original variance estimates when the true variance is larger than the
corrected variance estimate, that is, when v̂arc(θ̂2)− var(θ̂2) < 0. This ensures that our formula
becomes immune to the side effect of Windmeijer’s formula, which has an additional chance of
committing type-I error after the correction.

4 Comparison to Continuously Updating GMM

In an attempt to improve the finite-sample performances of the two-step GMM estimator, Hansen
et al. (1996) propose and investigate two alternative GMM estimators: iterated GMM and
continuously updating (CU) GMM. In Online Appendix B.2, we show that the finite-sample
corrected variance estimate for iterated GMM estimator can be formulated in the same way that
we correct the two-step GMM. This section analyzes the finite-sample distribution of the CU-
GMM to the same order shown for the two-step GMM and compares the uncorrected CU-GMM
inference with the inference using the finite-sample corrected two-step GMM.
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The CU-GMM estimator continuously optimizes the entire GMM criterion function, including
the inverted LRV estimator:

θ̂CU = arg min
θ∈Θ

M(θ, ST (θ)),

where M(θ, ST (θ)) = fT (θ)′S−1
T (θ)fT (θ). In HAR inference, Zhang (2016) and Hwang and Sun

(2017) show that the CU-GMM Wald tests are first-order equivalent to the two-step GMM tests
under fixed-smoothing asymptotics.

Define a dm×m matrix of Υ(θ) such that

Υ′(θ) =
[

Υ′1(θ), · · · ,Υ′d(θ)
]
,

where

Υj(θ) =
1

K

K∑
k=1

(
1√
T

T∑
t=1

Φk(
t

T
)
∂f(vt, θ)

∂θ

)(
1√
T

T∑
t=1

Φk(
t

T
)f(vt, θ)

)′
.

The FOC of the CU-GMM objective function is

Q((θ̂CU, ST (θ̂CU)) :=
1

2

∂M(θ, ST (θ))

∂θ

∣∣∣∣
θ=θ̂CU

= G̃T (θ̂CU)
[
ST (θ̂CU)

]−1
fT (θ̂CU) = 0,

where G̃T (θ) := GT − Υ′(θ)
{
Id ⊗

(
S−1
T (θ)fT (θ)

)}
is an effective Jacobian function for the CU-

GMM estimator.2 Donald and Newey (2006) show that G̃T (θ) is a key device for CU-GMM,
since it provides an appealing higher-order bias property for θ̂CU to the two-step GMM point
estimator, θ̂2. Newey and Smith (2004) derive a higher-order bias formula for θ̂CU in the i.i.d.
setting. Anatolyev (2005) extends the results of Newey and Smith (2004) in the time series
setting.

Zhang (2016) proves that under some mild conditions,

√
T (θ̂CU − θ0) = −

[
G′TS

−1
T (θ0)GT

]−1
G′TS

−1
T (θ0)

√
TfT (θ0) + op(1) (19)

holds under the first-order fixed-smoothing asymptotics. That is, the CU-GMM estimator is
asymptotically equivalent to the (in)feasible two-step GMM estimator. This leads us to construct
the J-statistic modification of the CU-Wald statistic as

F̃ (θ̂CU) =
K − p− q + 1

K
· F (θ̂CU)

1 + 1
KJ(θ̂CU)

,

where F (θ̂CU) is the Wald statistic using the uncorrected sandwich variance formula v̂ar(θ̂CU).
Hwang and Sun (2017) show that the J-statistic-modified t and Wald statistics, t̃(θ̂CU) and
F̃ (θ̂CU), are asymptotically t and F distributed, respectively, so they are first-order equivalent to
the two-step GMM tests considered in subsection 3.2.

However, Guggenberger (2005, 2008) provides numerical evidence of no-moment and heavy-
tail problems which are embodied in finite-sample distributions of the CU-GMM estimators,
which cannot be thoroughly explained by (19). To provide a better description of θ̂CU in finite

2See the proof of Lemma B.4 in Online Appendix B for a derivation of the FOC function Q(θ̂CU , ST (θ̂CU )).
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samples, we derive an expansion of θ̂CU in a way that is similar to our derivation of the corrected
two-step GMM in Section 2. Define a dm× d matrix

H̃(θ0) =


∂G̃T (θ)
∂θ1

∣∣∣
θ=θ0
−Υ1(θ0)S−1

T (θ0)
[
G̃T (θ0)

]
...

∂G̃T (θ)
∂θd

∣∣∣
θ=θ0
−Υd(θ0)S−1

T (θ0)
[
G̃T (θ0)

]
 ,

where ∂G̃T (θ)/∂θj = G̃
(a)
j,2 (θ) + G̃

(b)
j,2(θ) + G̃

(c)
j,2(θ) for j ∈ {1, . . . , d},

G̃
(a)
j,2 (θ) = −

[
Υ

(2)′
1j S

−1
T (θ)fT (θ), . . . ,Υ

(2)′
dj S

−1
T (θ)fT (θ)

]
,

G
(b)
j,2(θ) =

[
Υ′1(θ)S−1

T (θ) (Υj(θ) + Υj(θ)
′)S−1

T (θ)fT (θ), . . . ,Υ′d(θ)S
−1
T (θ) (Υj(θ) + Υj(θ)

′)S−1
T (θ)fT (θ)

]
,

G
(c)
j,2(θ) = −

[
Υ′1(θ)S−1

T (θ)GjT , . . . ,Υ′d(θ)S
−1
T (θ)GjT

]
,

and Υ
(2)
ji = ∂Υj(θ)/∂θi .

Assumption 6 θ̂CU = θ0 + op(1) and satisfies the first-order asymptotics in (19).

Theorem 4 Suppose that Assumptions 1—5 hold with θ̂CU and that Assumption 6 holds. Let
Ã(θ0, ST (θ0)) = Ã1(θ0, ST (θ0)) + Ã2(θ0, ST (θ0)), where

Ã1(θ0, ST (θ0)) =
[
G̃T (θ0)

]′
S−1
T (θ0)

[
G̃T (θ0)

]
+ {Id ⊗

(
fT (θ0)′S−1

T (θ0)
)
}H̃(θ0),

Ã2(θ0, ST (θ0)) =
1

2

d∑
j=1

∂Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

ψj(θ0, ST (θ0)),

ψj(θ0, ST (θ0)) = e′j
[
G′TS

−1
T (θ0)GT

]−1
G′TS

−1
T (θ0)fT (θ0),

and ej is a d-component vector with j-th component equal to 1, and 0 otherwise. Then, assuming
that Ã(θ0, ST (θ0)) is invertible, the CU-GMM admits the following expansion:

√
T (θ̂CU − θ0) = −

[
Ã(θ0, ST (θ0))

]−1 [
G̃T (θ0)

]′
S−1
T (θ0)

√
TfT (θ0) + op

(
1√
T

)
. (20)

The proof of Theorem 4 is in Online Appendix B. Theorem 4 provides an analytical expansion
of the CU-GMM estimator whose order of magnitude is the same as that of two-step GMM
estimator shown in (8). The exact expression for ∂Q(θ, ST (θ))/∂θj∂θ

′ is provided in Lemma
B.4 in Online Appendix B.4. It is not surprising that the CU scheme does not depend on the
initial weighting matrix WT in θ̂1. The difference between CU-GMM and two-step GMM is also
captured by the terms Ã1(θ0, ST (θ0)), Ã2(θ0, ST (θ0)), and G̃T (θ0) in (20). In the proof of Theorem
4, which is available in Online Appendix B.4, we show that these terms appear mainly because
of the effective Jacobian function, G̃T (θ), which is a non-linear function of θ. This contrasts with
the two-step GMM estimator, whose Jacobian term, GT , does not depend on θ.

The result in Theorem 4 indicates that the uncorrected F̃ (θ̂CU), which is based on the first-
order expansion in (19), may not reflect potentially large finite-sample variations embodied in the
non-linear CU estimation. In contrast, our proposed finite-sample corrected F̃ adjc (θ̂2) does not
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involve the non-linearity in the CU-GMM estimation and uses the corrected variance formula that
explicitly considers the finite-sample uncertainties in the estimated optimal weighting matrix. In
the next section, we numerically explore finite-sample distributions of θ̂2 and θ̂CU by investigating
the performance of the corrected two-step GMM test, F̃ adjc (θ̂2), and the uncorrected CU-GMM
test, F̃ (θ̂CU).

5 Simulation Results

We follow the simulation design in Sun (2014b) and Hwang and Sun (2017) and consider the
following linear structural model:

yt = α+ x1,tβ1 + x2,tβ2 + x3,tβ3 + εy,t,

where x1,t, x2,t, and x3,t are scalar regressors that are correlated with εy,t. The unknown parameter
vector is θ = (α, β1, β2, β3)′ ∈ Rd with d = 4, and there are m instruments z0,t, z1,t, ..., zm−1,t,
with z0,t ≡ 1. The reduced-form equations for x1,t, x2,t, and x3,t are given by

xj,t = zj,t +
m−1∑
i=d−1

zi,t + εxj ,t for j ∈ {1, 2, 3}. (21)

We assume that the zi,t for i ≥ 1 follow an AR(1) process, that is, zi,t = ρzi,t−1 +
√

1− ρ2ezi,t
where (e1

zt, ..., e
m−1
zt )′ ∼ N(0, Ve). The diagonal elements of Ve are equal to 1 and the off-diagonal

elements are equal to ψ. The data-generation process (DGP) for εt = (εyt, εx1t, εx2t, εx3t)
′ is

the same as the DGP for (z1,t, ..., zm−1,t)
′ except for the dimensionality difference. Thus the

parameter ψ ∈ [0, 1) serves as a degree of endogeneity between the regressor xj,t and εy,t. By
construction, the vectors, εt and (z1,t, ..., zm−1,t)

′ are independent of each other. We consider the
true parameters to be θ0 = (0, 0, 0, 0)′, ρ ∈ {0.3, 0.5, 0.7, 0.9}, and ψ = 0.5.

Define xt = (x1,t, x2,t, x3,t)
′ and zt = (z0,t, z1,t, ..., zm−1,t)

′. Then we have that the m moment
conditions are given by

E[f(vt, θ0)] = E[zt(yt − x′tθ0)] ∈ Rm. (22)

The closed-from expressions for the one-step, two-step, and iterated GMM estimators and the
corresponding formulas for the (un)corrected asymptotic variance estimators are shown in Online
Appendix B.3.

5.1 Point estimation

We construct the uncorrected and corrected asymptotic variance estimates by employing the
commonly used Bartlett kernel. For the basis functions in the OS-HAR estimation, we use the
orthonormal Fourier basis functions introduced in (12). For the choice of K∗ in the OS-LRV
estimation, we use K∗ = max{KMSE, 8} for q ∈ {1, 3} and K∗ = max{KMSE, 10} for q = 5,
where KMSE is the AMSE-optimal formula in Phillips (2005) and Sun (2013):

KMSE =

⌈(
tr [(Im2 +Kmm)(Ω⊗ Ω)]

4vec(B)′vec(B)

)1/5

T 4/5

⌉
.

d·e is the ceiling function, Kmm is them2×m2 commutation matrix, andB∗ = −π2/6
∑∞

j=−∞ j
2Eutu

′
t−j

with ut = f(vt, θ0). Similarly, in the case of the kernel LRV estimation, we select the smoothing
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parameter b∗ according to the asymptotic mean squared error (AMSE)-optimal formula in An-
drews (1991).3 The unknown parameters in the AMSE can be either calibrated or data driven
using the VAR(1) plug-in approach. Here, we use the data-driven VAR(1) plug-in approach, fol-
lowing Andrews (1991). The qualitative messages remain the same regardless of how the unknown
parameters are obtained.

We consider m ∈ {5, 7, 9}, and the corresponding degrees of over-identification are q = {1, 3,
5}. The number of replications in all of our Monte Carlo simulations is 10, 000. We look at the
finite-sample performance of the estimated values for β1 in the GMM point estimators, θ̂1, θ̂2, and
θ̂∞iter, and the corresponding finite-sample variances and median values of the asymptotic variance
estimates considered in the paper. Tables 1 and 2 show the results, which can be summarized as
follows.

First, the asymptotic variance estimates of the one-step estimator are close to the actual finite-
sample variances. This is because the one-step estimator does not require a non-parametric LRV
estimate as its GMM weight matrix. This is consistent with Hansen et al. (1996) and Windmeijer
(2005). Second, in contrast to the one-step GMM, the conventional sandwich asymptotic variance
estimates of the two-step GMM estimators are severely affected by a downward bias in finite
samples. The bias is more serious when the sample size is relatively small. For example, when
T = 100, q = 3, and ρ = 0.30, Table 1 indicates that the sandwich asymptotic variance estimate,
v̂ar(θ̂2), is about 35% downward biased from the true finite-sample variance var(θ̂2). When
T = 200, the downward bias decreases by 13%. The bias becomes larger as the degree of over-
identificaion q increases. Table 2 shows the same quantitative messages using the OS-LRV and
the iterated GMM estimator.

Table 1 also shows that the finite-sample corrected variance estimate proposed in this paper,
v̂aradjc (θ̂2), successfully reduces the downward bias of v̂ar(θ̂2). For instance, when T = 100,
q = 3, and ρ = 0.30, v̂aradjc (θ̂2) reduces the bias of v̂ar(θ̂2) by 29%. The improvement in the
bias correction of our estimator increases as q increases. We find the same quantitative messages
using the OS-LRV and the iterated GMM estimator, as shown in Table 2.

Although our corrected variance formula improves the finite-sample behavior of the asymp-
totic variance estimates for the GMM estimators, there is still a notable difference between
the finite-sample corrected asymptotic variance estimate and the actual finite-sample variances,
especially when ρ increases. This is not surprising, given that the time-series GMM method
yields a large amount of finite-sample variability from the non-parametric LRV estimator. The
finite-sample variability increases as the time-series dependence increases. This can be seen by
comparing the results for different values of ρ in Tables 1 and 2. As illustrated in subsection 3.2,
the non-parametric LRV estimate, v̂aradjc (θ̂2), converges in distribution to a random matrix under
fixed-smoothing asymptotics. In the next subsection, we consider this feature and investigate the
finite-sample performances of our proposed F test using v̂aradjc (θ̂2) in the Wald statistic.

Lastly, Tables 1 and 2 indicate that the bias in LRV estimation is less severe for the OS
estimator using Fourier basis functions than for the Bartlett kernel estimator. This is consistent
with previous findings in Lazarus, Lewis, and Stock (2019) in the exactly identified regression

3We note that, as is well known, minimizing the AMSE is equivalent to minimizing bias2+ variance for the
LRV estimator, can be different from the paper’s primary purpose, namely, tests for the structural parameter
vector. This is because minimizing the MSE leads to an underweighting of the bias that we address in this paper.
Alternatively, we can choose a larger smoothing parameter based on testing-oriented criteria. For example, Sun and
Phillips (2009) show that larger smoothing parameters are justified from the standpoint of reducing size distortions
in the kernel LRV estimation. The same caution can be applied to the choice of AMSE-optimal K∗. We thank an
anonymous referee for pointing this out.
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context.

5.2 Hypothesis testing

We consider the following null hypothesis of interest,

H0 : β1 = β2 = β3 = 0, (23)

where the number of restricted parameters in R is p = 3 and the nominal significance level
α is 5%. Given its superior performance to Bartlett LRV in point estimations, we consider
only test statistics using the OS LRV with Fourier basis functions. Under (23), we study the
empirical rejection probability (ERP) of the uncorrected Wald statistic, F (θ̂2), and the finite-
sample corrected Wald statistic, F adjc (θ̂2), which use chi-square critical values derived from the
conventional increasing- smoothing asymptotics. We examine the uncorrected Wald statistic with
the J-statistic modification, F̃ (θ̂2), as in Hwang and Sun (2017). We also examine F̃ adjc (θ̂2), which
is a finite-sample corrected version of F̃ (θ̂2). Both F̃ (θ̂2) and F̃ adjc (θ̂2) use asymptotic F critical
values which are derived under the fixed smoothing asymptotics. The same Wald test statistics
using the iterated GMM estimator, F (θ̂∞iter), F

adj
c (θ̂∞iter), F̃ (θ̂∞iter), and F̃

adj
c (θ̂∞iter), are considered.

The results are reported in Tables 3 and 4.
We first find that two-step GMM tests based on the uncorrected variance estimates and chi-

square critical values, F (θ̂2), suffer from severe size distortions on finite samples. For example,
when T = 100 and ρ = 0.50, Table 3 reports that the ERPs of F (θ̂2) are around 20%—43%, and
these size distortions increase up to 58%—87% when ρ increases to 0.90, as shown in Table 4. As
we point out, one possible reason for the failure of the chi-square test is the difference in behavior
between the asymptotic variance estimate and the actual finite-sample variance of the two-step
GMM estimators. That difference can be reflected in the corrected variance estimates that we
provide. When the corrected version of the test statistic, F adjc (θ̂2), is used, it can help reduce the
finite-sample size distortions. For example, the ERPs of F (θ̂2) when ρ = 0.50 and T = 100 are
reduced to 17%—27%, as shown Table 3. When ρ = 0.90 and T = 100, the ERPs of F (θ̂2) are
reduced to 25%—44%, as shown Table 4. Lastly, the results in Tables 3 and 4 also indicate that
the size distortions become larger as the degree of over-identification q increases.

Although our simulation results suggest that the finite-sample variance correction can improve
the Wald inference, there are still significant size distortions for F adjc (θ̂2)), as shown in Tables 3
and 4, which indicate the limitations of chi-square tests. This is because the chi-square critical
value from the increasing-smoothing asymptotics cannot capture the estimation uncertainty in
the nonparametric weight matrix ST (θ0). This is why we employ F critical values using the J-
statistic-modified Wald statistic driven by the fixed-smoothing asymptotics and obtain a further
improvement in the finite-sample inference. The results are provided in Tables 3 and 4. We first
observe that the size distortions of all testing procedures are substantially reduced. For example,
the ERPs of F̃ (θ̂2) are reported to be around 9% when T = 100 and ρ = 0.50. Thus the F tests
clearly reduce the finite-sample size distortion from previous chi-square tests by 23% on average.
This agrees with the previous literature, such as Hwang and Sun (2017) and Sun (2011, 2013),
which highlights the accuracy of the fixed-smoothing asymptotics using OS LRV.

We find that the two-step GMM test with the corrected variance estimates, F̃ adjc (θ̂2), proposed
in this paper can further reduce the finite-sample size distortions, which is shown in Tables 3
and 4. For example, when T = 100 and ρ = 0.50, the 8%—10% size distortions of F̃ (θ̂2) are
reduced to 4%—8% after the corrected variance estimates are used in F̃ adjc (θ̂2). When T = 100
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and ρ = 0.90, the 12%—21% size distortions of F̃ (θ̂2) are reduced to 3%—14%. The other results in
Tables 3 and 4 exhibit similar quantitative and qualitative interpretations for the iterated GMM
when the value of ρ is small and q < 5. When ρ is high or q increases, which induces a smaller
choice of the optimal KMSE, we find that the performance of the iterated GMM test, F̃ adjc (θ̂∞iter),

is dominated by that of the two-step GMM test, F̃ adjc (θ̂2). We note that this finding does not
support the first-order equivalence of the two-step and iterated procedures in GMM.

In sum, our numerical findings for two-step GMM are consistent with the theoretical results
developed in this paper, which indicate that the F̃ adjc (θ̂2) procedure is able to further refine
the fixed-smoothing asymptotics by capturing the initial estimation uncertainty from the non-
parametric LRV estimator. It is interesting to note that the amount of finite-sample improvement
using F̃ adjc (θ̂2) is increasing in the degree of over-identification q. However, we find that using our
corrected formula, v̂aradjc (θ̂2), can lead to some conservatism for certain parameter constellations,
for example when ρ = 0.9 and q = 5.

Tables 3 and 4 explore finite-sample distributions of θ̂2 and θ̂CU in a numerical dimension
by investigating the performances of the corrected two-step GMM test and the uncorrected CU-
GMM test. When the degree of persistence is mild, for example when ρ ∈ {0.3, 0.5}, the CU-GMM
test, F̃ (θ̂CU), which uses F critical values and the J-statistic modification, behaves similarly to
the uncorrected F -test using two-step GMM, F̃ (θ̂2). However, F̃ (θ̂CU) is more size-distorted than
F̃ (θ̂2) when the degree of over-identification, q, increases to 5. In all of these cases, the finite-
sample corrected two-step test F̃ adjc (θ̂2) performs better than the uncorrected F̃ (θ̂CU).We also find
that the ERPs of F̃ (θ̂CU) perform its best on finite samples when the degree of over-identification
q is equal to 1, that is, when the model is close to being exactly identified.

Lastly, we point out that more than half of reductions in empirical size distortions for F (θ̂2)
and F (θ̂∞iter) are driven by using F critical values with the J-statistic modification, as originally
shown in Hwang and Sun (2017). However, the result is not unexpected in our asymptotic theory,
because under our asymptotics the order of the finite-sample correction is Op(T−1/2). Our finite-
sample correction is designed to target the smaller order of error still embodied in the ERPs
of the J-statistic-modified F test of Hwang and Sun (2017). Our simulation results in Tables
3 and 4 successfully show that the error of order Op(T−1/2) could be further reduced with the
finite-sample corrected statistics proposed in this paper.

5.3 Weak identification

GMM inference often suffers from identification issues as well; see, for example, the July 1996
special issue of the Journal of Business & Economic Statistics. Stock and Wright (2000) point
out that the weak identification of the GMM parameters can be another source of the poor finite-
sample properties of HAR tests. In this subsection, we use Monte Carlo simulations to explore
the issue of weak identification and to investigate how our proposed tests fare relative to their
alternatives when the identification in (22) is weakened. Namely, we alter our previous DGP by
premultiplying the first two summands in the first stage regression (21) by a constant π = 0.10,
that is,

xj,t = π

(
zj,t +

m−1∑
i=d−1

zi,t

)
+ εxj ,t for j ∈ {1, 2, 3}. (24)

From simple algebra, we can derive that the value of R-squared is given by (q+1)/((q+1)+1/π2).
With our choices of q ∈ {1, 3, 5} and π = 0.10, the set of R-squared values corresponds to {0.0196,
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0.0385, 0.0566}. We consider the degree of endogeneity, ψ, in {0.5, 0.9}. All other DGPs are the
same as in previous sections. To save space, we report results only for ρ ∈ {0.70, 0.90).

The simulation results in Table 5 show that the presence of weak identification affects the
performance of all the tests considered. To be specific, with a mild endogeneity degree ψ = 0.5,
the corrected F test, F̃ adjc (θ̂2), becomes more under-sized in most cases, but over-sized when ρ
increases to 0.90 , q ∈ {1, 3}, and T = 100. When the degree of endogeneity, ψ, increases to
0.90, however, we find that both the uncorrected and corrected F tests are severely size distorted
in finite samples. For example, with ρ = 0.90, q = 3, and T = 200, the ERP of the corrected
F tests is about 19%. Nevertheless, we find that our finite-sample correction remains effective
in reducing a large amount of the size distortion in the uncorrected F tests. We also find that
the uncorrected CU-GMM test with the J-statistic modification and F critical values, F̃ (θ̂CU),
performs similarly to the uncorrected F test in most cases, but it becomes more over-sized as q
increases. When ψ is 0.90, the uncorrected CU-GMM is more size-distorted than when ψ = 0.50,
which is also the case for the uncorrected two-step GMM test F̃ (θ̂2).

Summing up, our finite-sample evidence indicates that in cases of both strong and weak
identification, the uncorrected CU-GMM performs best when the degree of over-identification is
equal to 1. However, the performance of the uncorrected CU-GMM test has no advantage over
the uncorrected two-step GMM test. Also, the finite-sample corrected two-step test performs
better than the uncorrected CU-GMM test.

6 Conclusion

We develop an improved heteroskedasticity autocorrelated robust (HAR) inference that uses a
finite-sample bias-corrected asymptotic variance estimate for the effi cient GMM estimator in time
series. We extend Windmeijer’s (2005) approach to the time-series setting by explicitly consider-
ing the non-parametric LRV estimator in the bias-corrected variance formula. We formally show
the consistency of the finite-sample corrected variance estimate when the smoothing parameter
in the LRV estimator is fixed or is increasing with respect to the sample size. After the correc-
tion, our eigenvalue adjustments ensure that the corrected Wald test statistic is immune to the
potential side effect of Windmeijer’s formula which can introduce an additional type-I error.

With our finite-sample corrected variance estimator, this paper constructs t and Wald tests
using the fixed-smoothing asymptotics. The standard t and F limiting distributions provide
a convenient solution to the effi cient GMM inference problem. We also provide an analytical
expansion of the CU-GMM estimator and point out that the standard Wald inference using the
CU-GMM cannot reflect potentially significant finite-sample variations embodied in the non-
linear CU estimation.

Our Monte Carlo results show that the asymptotic t and F tests developed in this paper
reduce the empirical size distortions compared to those in the existing tests in Sun (2014b) and
Hwang and Sun (2017). Our findings show that the amount of size improvement increases as
the degree of over-identificaion increases or as the time-series dependence increases. Also, we
find that the finite-sample corrected two-step test outperforms the uncorrected CU-GMM test
on finite samples.
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Appendix A: Proofs of Main Results

Proof of Lemma 1. We prove the result for the general non-linear case. For each j ∈ {1, . . . , d},
we have

D(θ̂2, ST (θ̂1))[., j] = (A(θ̂2, ST (θ̂1))−1GT (θ̂2)′S−1
T (θ̂1)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ̂1)fT (θ̂2)

= (G′T (θ0)S−1
T (θ0)GT (θ0))−1G′T (θ0)S−1

T (θ0)
∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ0)fT (θ̂2)(1 + op(1)),

where the second equality holds by Assumptions 3 and 4, together with (6). Using the first-order
Taylor expansion of fT (θ̂2), we have

D(θ̂2, ST (θ̂1))[., j] =
{
G′T (θ0)S−1

T (θ0)GT (θ0)
}−1

GT (θ0)′S−1
T (θ0)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ0)fT (θ0)(1 + op(1))

−
{{

G′T (θ0)S−1
T (θ0)GT (θ0)

}−1
GT (θ0)′S−1

T (θ0)
∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ0)GT (θ0)

×
{
G′T (θ0)S−1

T (θ0)GT (θ0)
}−1

GT (θ0)′S−1
T (θ0)fT (θ0)

}
(1 + op(1))

for each j ∈ {1, ..., d}. For the term ∂ST (θ)/∂θj |θ=θ̂1 , recall that it is equal to Υj(θ̂1) + Υ′j(θ̂1).

We want to show that Υj(θ̂1) = Υj(θ0)(1 + op(1)). Let us define

Υ∗j (θ̂1) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
gj(vt, θ̂1)f(vs, θ̂1)′,

where Q∗h(r, s) = Qh(r, s) −
∫ 1

0 Qh(τ1, s)dτ1 −
∫ 1

0 Qh(r, τ2)dτ2 +
∫ 1

0

∫ 1
0 Qh(τ1, τ2)dτ1dτ2. We first

consider the case in which h is fixed as T →∞. For some θ̄∗T,j for j ∈ {1, . . . , d}, and θ̆∗T , both of
which are between θ̂1 and θ0, we can write

Υ∗j (θ̂1) =
1

T

T∑
s,t=1

Q∗h

(
t

T
,
s

T

)
gj(vt, θ0)f(vτ , θ0)′ (25)

+
1

T

T∑
s,t=1

Q∗h

(
t

T
,
s

T

)(
∂gj(vt, θ̄

∗
T,j)

∂θ′
(θ̂1 − θ0)

)
f(vτ , θ0)′

+
1

T

T∑
s,t=1

Q∗h

(
t

T
,
s

T

)′(∂f(vt, θ̆
∗
T )

∂θ′
(θ̂1 − θ0)

)
gj(vτ , θ0)′

+
1

T

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)(
∂gj(vt, θ̄

∗
T,j)

∂θ′
(θ̂1 − θ0)

)[
∂f(vτ , θ̆

∗
T )

∂θ′
(θ̂1 − θ0)

]′
:= Υ∗j (θ0) + I1 + I2 + I3,

for each j ∈ {1, . . . , d}. Let us define εj,t = Ht,j(θ̄
∗
T,j) − (t/T )Hj for each j ∈ {1, . . . , d}. By

Assumption 4 and the definition of initial estimator θ̂1, εj,t does not depend on h and satisfies
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sup1≤t≤T ||εj,t|| = op(1) for each j ∈ {1, . . . , d}. Setting At =
∂gj(vt,θ̄

∗
T,j)

∂θ′ (θ̂1 − θ0) and Bτ = uτ :=
f(vτ , θ0), we apply Lemma B.3 in Online Appendix B.4 and re-write I1 as

I1 = Hj(θ̂1 − θ0)
1

T

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
u′τ + TQ∗h(1, 1)εj,T (θ̂1 − θ0)S ′T (u)

+ T

T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
εj,T (θ̂1 − θ0)S ′τ (u)

+ T

T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
εj,t(θ̂1 − θ0)S ′T (u)

+ T
T−1∑
τ=1

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)
εj,t(θ̂1 − θ0)S ′τ (u)

:= I11 + I12 + I13 + I14 + I15,

where Sτ (u) = T−1
∑τ

s=1 us for τ = 1, . . . , T. We want to show that I1i for each i ∈ {1, . . . 5} is
op(1) as T →∞ holding h fixed. For I11, there exists a finite M > 0 which does not depend on
t such that

‖I11‖ =

∥∥∥∥∥Hj

√
T (θ̂1 − θ0)

1√
T

T∑
τ=1

[∫ 1

0
Q∗h

(
r,
τ

T

)
dr +O

(
1

T

)]
u′τ

∥∥∥∥∥ (26)

≤ M

T

∥∥∥∥∥
(
Hj

√
T (θ̂1 − θ0)

1√
T

T∑
τ=1

u′τ

)∥∥∥∥∥ = Op

(
1

T

)
= op(1),

where the inequality follows from
∫ 1

0 Q
∗
h

(
r, τT

)
dr = 0. It is easy to check that I12 = op(1) from

the FCLT condition in (1) and εj,T = op(1). Next, we consider I13. By summation by parts, we
have that

I13 = εj,T
√
T (θ̂1 − θ0)

[
1√
T

T∑
τ=1

Q∗h

(
1,
τ

T

)
uτ

]
− εj,T

√
T (θ̂1 − θ0)Q∗h (1, 1)S ′T (u) (27)

= op(1),

where the last equality follows from the boundedness of the function Q∗h (·, ·) , and that fact that
εj,T = op(1). For I14, we have that

‖I14‖ ≤
∥∥∥∥∥
T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
εj,t

∥∥∥∥∥∥∥∥√T (θ̂1 − θ0)
∥∥∥∥∥∥√TS ′T (u)

∥∥∥ (28)

≤ sup
1≤t≤T

||εj,t||
∥∥∥∥∥
T−1∑
t=1

Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)∥∥∥∥∥×Op(1)

= op(1)

∣∣∣∣Q∗h( 1

T
, 1

)
−Q∗h (1, 1)

∣∣∣∣ = op(1).

Lastly, for I15, we have that

‖I15‖ ≤ sup
1≤t≤T

||εj,t||
∥∥∥∥∥
T−1∑
τ=1

[
T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)]√
T (θ̂1 − θ0)

√
TS ′τ (u)

∥∥∥∥∥ . (29)
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For each τ ∈ {1, . . . , T},

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)
=

T−1∑
t=1

[
Q∗h

(
t

T
,
τ

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)]
−
T−1∑
t=1

[
Q∗h

(
t

T
,
τ + 1

T

)
−Q∗h

(
t+ 1

T
,
τ + 1

T

)]
=

[
Q∗h

(
1

T
,
τ

T

)
−Q∗h

(
1

T
,
τ + 1

T

)]
−
[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
.

Using this result, we re-express the upper bound on ‖I15‖ in (29) by

sup
1≤t≤T

||εj,t|| ×
∣∣∣∣∣
T−1∑
τ=1

[
Q∗h

(
1

T
,
τ

T

)
−Q∗h

(
1

T
,
τ + 1

T

)]
−
[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]∣∣∣∣∣
×
∥∥∥√T (θ̂1 − θ0)

∥∥∥∥∥∥∥ max
1≤τ≤T

√
TS ′τ (u)

∥∥∥∥
= op(1)×

∣∣∣∣[Q∗h( 1

T
,

1

T

)
−Q∗h

(
1

T
, 1

)]
−
[
Q∗h

(
1,

1

T

)
−Q∗h (1, 1)

]∣∣∣∣×Op(1) = op(1),

where the first equality follows from the FCLT and the continuous mapping theorem. We have
therefore shown that I1 = op(1). The proofs of I2 = op(1) and I3 = op(1) can be done in a very
similar manner, and we omit the details. Using these results, we can conclude that

Υ∗j (θ̂1) = Υ∗j (θ0)(1 + op(1)) (30)

for each j ∈ {1, . . . , d}. Using the result in Lemma B.2 in Online Appendix B.4, we obtain

Υ∗j (θ̂1) = Υj(θ̂1)(1 + op(1)) and Υ∗j (θ0) = Υj(θ0)(1 + op(1)), (31)

which implies that Υj(θ̂1) = Υj(θ0)(1 + op(1)) for each j ∈ {1, . . . , d}. From this result, it is
straightforward to obtain

D(θ̂2, ST (θ̂1)) = D(θ0, ST (θ0))(1 + op(1)), (32)

which is the desired result.
Now, we consider the case where (h, T )→∞ such that h/T → 0.We first want to check that

the terms I1—I3 are still op(1) when (h, T )→∞ such that h/T → 0. For I11, we have that

‖I11‖ =

∥∥∥∥∥Hj

√
T (θ̂1 − θ0)

1√
T

T∑
τ=1

[
1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)]
u′τ

∥∥∥∥∥
= o(1)

∥∥∥∥∥Hj

√
T (θ̂1 − θ0)

(
1√
T

T∑
τ=1

u′τ

)∥∥∥∥∥ = op(1),

where the second equality follows from part (c) of Lemma B.1 in Online Appendix B.4. Also, we
check that I12 = op(1) since εj,T = op(1) does not depend on h. A careful inspection of (27)—(29)
indicates that the terms I13—I15 are also op(1) because Q∗h(·, ·) is uniformly bounded in h under
Assumption 1. The proofs of I2 = op(1) and I3 = op(1) can be done in a very similar manner,
and we omit the details. This concludes that the result in (30) also holds when (h, T )→∞ such
that h/T → 0. From the result in Lemma B.2 in Online Appendix B.4, we also obtain that (31)
also holds when (h, T )→∞ such that h/T → 0, which leads to the desired result in (32).

27



Proof of Theorem 2. We prove only part (b), as the proof of (a) can be done in the same way.
Define the infeasible finite-sample corrected variance

v̂arinfc (θ̂2) = v̂ar(θ̂2) +D(θ0, ST (θ0))v̂ar(θ̂2)

+ v̂ar(θ̂2)D(θ0, ST (θ0))′ +D(θ0, ST (θ0))v̂ar(θ̂1)D(θ0, ST (θ0))′,

with corresponding statistic F infc (θ̂2) = (Rθ̂2−r)′[Rv̂arinfc (θ̂2)R′]−1(Rθ̂2−r)/p. Then (32) implies
that v̂arc(θ̂2) = v̂arinfc (θ̂2)(1 + op(1)). Thus the corresponding infeasible Wald statistic satisfies
Fc(θ̂2) = F infc (θ̂2)(1+op(1)). Also, Dθ0,ST (θ0) = op(1) implies that v̂arinfc (θ̂2) = v̂ar(θ̂2)(1+op(1)),
and this leads us to get

Fc(θ̂2) = F infc (θ̂2)(1 + op(1)) = F (θ̂2) + op(1),

as desired.
Proof of Theorem 3. Define the modified (uncorrected) Wald statistic using F (θ̂2) as

F̃ (θ̂2) :=
K − p− q + 1

K
· F (θ̂2)

1 + 1
KJ(θ̂2)

,

and similarly define t̃(θ̂2) using t(θ̂2). Under Assumptions 2—5, we can apply Theorem 1 in Hwang

and Sun (2017), and we obtain that t̃(θ̂2)
d→ tp,K−q and F̃ (θ̂2)

d→ Fp,K−p−q+1 for a fixed K and
T →∞. By Theorem 2, we have that

t̃c(θ̂2) = t̃(θ̂2) + op(1) and F̃c(θ̂2) = F̃ (θ̂2) + op(1),

and this gives us the desired results

t̃c(θ̂2)
d→ tK−q and F̃c(θ̂2)

d→ Fp,K−p−q+1.
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B.1 Finite-sample correction formula for non-linear moments

In the non-linear moment case, recall that the Taylor expansion of the FOC in (3),
√
T (θ̂2 − θ0),

is expanded as:

√
T (θ̂2 − θ0) = −

[
A(θ0, ST (θ̂1))

]−1
GT (θ0)′S−1

T (θ̂1)
√
TfT (θ0) +Op

(
1√
T

)
, (B.1)

where the matrix A(θ0, ST (θ̂1)) of second-order derivatives is given as

A(θ0, ST (θ̂1)) = GT (θ0)′S−1
T (θ̂1)GT (θ0) +HT (θ0)′ (Id ⊗ S−1

T (θ̂1)fT (θ0))

and

HT (θ0) =


∂GT (θ)
∂θ1

∣∣∣
θ=θ0

...
∂GT (θ)
∂θd

∣∣∣
θ=θ0

 .
Then we can formulate an estimator for the asymptotic variance of θ̂2 as

v̂ar(θ̂2) =
1

T

[
A(θ̂2, ST (θ̂1))

]−1 (
G′T (θ̂2)S−1

T (θ̂1)GT (θ̂2)
) [
A(θ̂2, ST (θ̂1))

]−1′
.

Note that the form of v̂ar(θ̂2) in (4) is different from the standard asymptotic variance estimate

(G′T (θ̂2)S−1
T (θ̂1)GT (θ̂2))−1. Keeping this term, however, could potentially improve the finite-

sample performance of v̂ar(θ̂2), because the second term in the expression for A(θ̂2, ST (θ̂1)),
HT (θ̂2)′(Id ⊗ S−1

T (θ̂1)fT (θ̂2)), which is of stochastic order Op(T−1/2) = op(1), is non-zero in a
finite sample in over-identified GMM, (e.g., Windmeijer (2005)).

Similarly to the expansion in (8) and taking a further expansion of (B.1), we have that
√
T (θ̂2 − θ0) = −(A(θ0, ST (θ0))−1GT (θ0)′S−1

T (θ0)
√
TfT (θ0)

+D(θ0, ST (θ0))
√
T (θ̂1 − θ0) +Op

(
1√
T

)
, (B.2)

where

D(θ0, ST (θ0)) =
∂
[
−(A(θ0, ST (θ))−1GT (θ0)′S−1

T (θ)fT (θ0)
]

∂θ′

∣∣∣∣∣
θ=θ0

1



is a d× d matrix. The j-th column of D(θ0, ST (θ0)) is expressed as

D(θ0, ST (θ0))[., j] = (A(θ0, ST (θ0))−1 ∂A(θ0, ST (θ)))

∂θj

∣∣∣∣
θ=θ0

(A(θ0, ST (θ0))−1 (B.3)

×GT (θ0)′S−1
T (θ0)fT (θ0) + (A(θ0, ST (θ))−1GT (θ0)′S−1

T (θ0) (B.4)

× ∂ST (θ)

∂θj

∣∣∣∣
θ=θ0

S−1
T (θ0)fT (θ0). (B.5)

From the FOC, the first term in (B.3) is always estimated as zero, so the feasible estimator for
D(θ0, ST (θ0))[., j] is

D(θ̂2, ST (θ̂1))[., j] = (A(θ̂2, ST (θ̂1))−1GT (θ̂2)′S−1
T (θ̂1)

× ∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ̂1)fT (θ̂2),

where the formula for∂ST (θ)/∂θj |θ=θ̂1 is provided in (10). The finite-sample corrected formula
is then given by

v̂arc(θ̂2) = v̂ar(θ̂2) +D(θ̂2, ST (θ̂1))v̂ar(θ̂2)

+ v̂ar(θ̂2)D(θ̂2, ST (θ̂1))′ +D(θ̂2, ST (θ̂1))v̂ar(θ̂1)D(θ̂2, ST (θ̂1))′,

where

v̂ar(θ̂1) =
1

T

(
GT (θ̂2)′W−1

T GT (θ̂2)
)−1 (

GT (θ̂2)′W−1
T ST (θ̂1)W−1

T GT (θ̂2)
)(

GT (θ̂2)′W−1
T GT (θ̂2)

)−1
,

v̂ar(θ̂2) =
1

T

[
A(θ̂2, ST (θ̂1))

]−1 (
G′T (θ̂2)S−1

T (θ̂1)GT (θ̂2)
) [
A(θ̂2, ST (θ̂1))

]−1′
.

Unlike the linear moment condition illustrated in Section 2, we note that there still exists a
remainder term of order Op(T−1/2) in (B.2) which arises from the Jacobian function GT (θ). The
remainder term is of the same order as our correction term, D(θ0, ST (θ0)). This implies that the
effect of finite-sample improvement after taking account of D(θ̂2, ST (θ̂1)) in our corrected formula
can depend on its magnitude relative to that of the remainder term in (B.2). The same points
are mentioned in Windmeijer (2005) and Hwang et al. (2020).

B.2 Iterated GMM

Let θ̂0
iter be the two-step estimator θ̂2. For j ≥ 1, the j-th iterated GMM estimator θ̂jIE is defined

as the solution to the following minimization problem:

θ̂jiter = arg min
θ∈Θ

M
(
θ, ST

(
θ̂j−1
iter

))
, (B.6)

whereM(θ, ST (θ̂j−1
iter )) = fT (θ)′S−1

T (θ̂j−1
iter )fT (θ). The asymptotic distribution of

√
T (θ̂1

iter−θ0) can
be represented as follows:

√
T (θ̂1

iter − θ0) =− (G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) (B.7)

+Dθ0,ST (θ0)

√
T (θ̂2 − θ0) + op

(
1√
T

)
. (B.8)
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Substituting the expansion in (8) into (B.8), we can represent the first iteration estimator as
√
T (θ̂1

iter − θ0) =− (Id +D(θ0, ST (θ0))) (G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

+ [D(θ0, ST (θ0))]2
√
T (θ̂1 − θ0) + op

(
1√
T

)
.

The leading term in
√
T (θ̂1

iter − θ0) consists of an asymptotic normal distribution, part of which
is scaled by Id + D(θ0, ST (θ0)). Also, the effect of the one-step estimator

√
T (θ̂1 − θ0) decays

through the iteration procedure when we keep repeating this substitution until the j-th iteration:

√
T (θ̂jiter − θ0) =−

[
Id +

j∑
i=1

[D(θ0, ST (θ0))]i
]

(G′TS
−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

+ [D(θ0, ST (θ0))]j+1
√
T (θ̂1 − θ0) + op

(
1√
T

)
.

When the number of iterations j goes to infinity, θ̂jiter is expected to converge to a random
variable θ̂∞iter.

1 Then the impact of
√
T (θ̂1 − θ0) on

√
T (θ̂jiter − θ0) through [D(θ0, ST (θ0))]j+1 =

Op(T
−(j+1)/2) can be perfectly removed, and we have that

√
T (θ̂∞iter − θ0) = − (Id −D(θ0, ST (θ0)))−1 (G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0) + op

(
1√
T

)
,

assuming that Id−D(θ0, ST (θ0)), which is Id+op(1), is invertible. The corrected variance estimate
for θ̂∞iter is constructed as follows :

v̂arc

(
θ̂∞iter

)
=
(
Id −D

(
θ̂∞iter, ST (θ̂∞iter)

))−1
v̂ar

(
θ̂∞iter

)(
Id −D

(
θ̂∞iter, ST (θ̂∞iter)

)′)−1

,

where v̂ar(θ̂∞iter) = T−1(G′TS
−1
T (θ̂∞iter)GT )−1 is the standard sandwich variance formula. The

corrected formula for θ̂∞iter extends that of Windmeijer (2000), which is formulated in an i.i.d.
setting. The corrected Wald statistic is

Fc(θ̂
∞
iter) =

1

p

(
Rθ̂∞iter − r

)′ (
Rv̂arc(θ̂

∞
iter)R

′
)−1 (

Rθ̂∞iter − r
)
.

Similarly, one can construct the corrected t statistic when p = 1. The asymptotic distribution of
Fc(θ̂

∞
iter) can be characterized as

Fc(θ̂
∞
iter) =

1

p
×
[
R (Id −D(θ0, ST (θ0)))−1 (G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

]′

×

 R
(
Id −D

(
θ̂∞iter, ST (θ̂∞iter)

))−1 (
G′TS

−1
T (θ̂∞iter)GT

)−1

·
(
Id −D

(
θ̂∞iter, ST (θ̂∞iter)

)′)−1

R′


−1

×
[
R (Id −D(θ0, ST (θ0)))−1 (G′TS

−1
T (θ0)GT )−1G′TS

−1
T (θ0)

√
TfT (θ0)

]
+ op(1).

1Hansen and Lee (2020) provide some regular conditions that guarantee that the loop of the iteration sequence,
θ̂jiter for j = 1, 2, . . . , is a contraction mapping, which implies that the iteration estimator θ̂

∞
iter is the fixed point.

3



Under the fixed-smoothing asymptotics, we have that ST (θ0)
a∼ ST . The asymptotically equivalent

distribution of Fc(θ̂∞iter) is then given by

Fiter =
1

P

[
R̃(G′TS

−1
T GT )−1G′TS

−1
T ΛZ

]′ [
R̃
(
G′TS

−1
T GT

)−1
R̃′
]−1 [

R̃(G′TS
−1
T GT )−1G′TS

−1
T ΛZ

]
,

where R̃ = R(Id−D(θ0, ST (θ0)))−1 is a p×dmatrix. Considering R̃ = R+op(1) and Theorem 1 in
Sun(2014), we obtain Fiter = F+op(1). Thus instead of approximating Fc(θ̂∞iter) by a conventional
χ2
d/p distribution, the standard t and F distributions shown in Theorem 3 and (18), together
with the corrected variance estimate v̂arc(θ̂∞iter), the J-statistic modification, and the finite-sample
adjustments in subsection 3.2, can be used to obtain asymptotic critical values for tadjc (θ̂∞iter) and
F adjc (θ̂∞iter), respectively.

B.3 Finite-sample corrected formula for linear-IV model

Let X = (x1, ..., xT )′ ∈ RT×d, Z = (z1, ..., zT )′ ∈ RT×m, and y = (y1, ..., yT )′. We choose the
initial weight matrix WT as Z ′Z/T. This makes the initial one-step estimator θ̂1 equivalent to
the two-stage least-square estimator (2SLS), which is formulated as

θ̂1 =
(
X ′ZW−1

T Z ′X
)−1 (

X ′ZW−1
T Z ′y

)
,

and the corresponding asymptotic variance estimator is

v̂ar(θ̂1) = T
(
X ′ZW−1

T Z ′X
)−1

(
X ′ZW−1

T ST

(
θ̂1

)
W−1
T Z ′X

) (
X ′ZW−1

T Z ′X
)−1

,

where

ST

(
θ̂1

)
=

1

T

T∑
t=1

T∑
s=1

Qh(
t

T
,
s

T
)

ztεy,t(θ̂1)− 1

T

T∑
j=1

zjεy,j(θ̂1)


×

ztεy,t(θ̂1)− 1

T

T∑
j=1

zjεy,j(θ̂1)

′ .
and εy,t(θ̂1) = yt − x′tθ̂1. The effi cient two-step GMM estimator is

θ̂2 =
(
X ′ZS−1

T (θ̂1)Z ′X
)−1

X ′ZS−1
T (θ̂1)Z ′y,

and the corresponding uncorrected sandwich variance estimator and the corrected variance esti-
mator are

v̂ar(θ̂2) = T
(
X ′ZS−1

T (θ̂1)Z ′X
)−1

and

v̂arc(θ̂2) = v̂ar(θ̂2) +D(θ̂2, ST (θ̂1))v̂ar(θ̂2) + v̂ar(θ̂2)D(θ̂2, ST (θ̂1))′

+D(θ̂2, ST (θ̂1))v̂ar(θ̂1)D(θ̂2, ST (θ̂1))′,
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respectively, where the j-th column of D(θ̂2, ST (θ̂1)) is given by

D(θ̂2, ST (θ̂1)) [., j] = −
(
X ′ZS−1

T (θ̂1)Z ′X
)−1

X ′ZS−1
T (θ̂1)

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

S−1
T (θ̂1)Z ′εy(θ̂2);

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂1

= Υj(θ̂1) + Υ′j(θ̂1)

and εy(θ̂1) = (εy,1(θ̂1), ..., εy,T (θ̂1))′. The formula for Υj(θ̂1) is

Υj

(
θ̂1

)
= − 1

T

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)(
ztxj,t −

1

T

T∑
i=1

zixj,i

)(
εy,s(θ̂1)z′s −

1

T

T∑
i=1

εy,i(θ̂1)z′i

)
.

The iterated GMM estimator, θ̂∞iter, which repeats the loop of the iteration sequence in (B.6), is
given by

θ̂∞iter =
(
X ′ZS−1

T (θ̂∞iter)Z
′X
)−1

X ′ZS−1
T (θ̂∞iter)Z

′y,

and the corresponding uncorrected sandwich variance estimator and the corrected variance esti-
mator are

v̂arc

(
θ̂∞iter

)
=
(
Id −D

(
θ̂∞iter, ST (θ̂∞iter)

))−1
v̂ar

(
θ̂∞iter

)(
Id −D

(
θ̂∞iter, ST (θ̂∞iter)

)′)−1

and
v̂ar

(
θ̂∞iter

)
= T

(
X ′ZS−1

T (θ̂∞iter)Z
′X
)−1

,

where

D
(
θ̂∞iter, ST (θ̂∞iter)

)
[., j] = −

(
X ′ZS−1

T (θ̂∞iter)Z
′X
)−1

X ′ZS−1
T (θ̂∞iter)

× ∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂∞iter

S−1
T (θ̂∞iter)Z

′εy(θ̂
∞
iter),

∂ST (θ)

∂θj

∣∣∣∣
θ=θ̂∞iter

= Υj(θ̂
∞
iter) + Υ′j(θ̂

∞
iter).

B.4 Technical lemmas and proof of Theorem 4

Lemma B.1 Under Assumption 1, together with h → ∞ and T → ∞ such that h/T →0, the
following hold:

(a) T−2
∑T

τ1=1

∑T
τ2=1Qh( τ1T ,

τ2
T )−

∫ 1
0

∫ 1
0 Qh(τ1, τ2)dτ1dτ2 = o(1);

(b) sup1≤t≤T

{
T−1

∑T
τ=1Qh

(
t
T ,

τ
T

)
−
∫ 1

0 Qh
(
t
T , τ2

)
dτ2

}
= o(1);

(c) sup1≤τ≤T T
−1
∑T

t=1Q
∗
h

(
t
T ,

τ
T

)
= o(1), where

Q∗h(r, s) = Qh(r, s)−
∫ 1

0
Qh(τ1, s)dτ1 −

∫ 1

0
Qh(r, τ2)dτ2 +

∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2.
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Proof of Lemma B.1. We start by proving the results for the case when Qh(r, s) = k((r−s)/b),
where h = 1/b. Denote bT by BT . For part (a),

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh(
τ1

T
,
τ2

T
) =

1

T 2

T∑
τ1=1

T∑
τ2=1

k

(
τ1 − τ2

BT

)
=

1

T

T−1∑
j=−T+1

(T − |j|)
T

k

(
j

BT

)

=

(
BT
T

)
1

BT

T−1∑
j=−T+1

k

(
j

BT

)
− BT

T

1

T

T−1∑
j=−T+1

|j|
BT

k

(
j

BT

)

=

(
BT
T

)
1

BT

T−1∑
j=−T+1

k

(
j

BT

)
︸ ︷︷ ︸

→
∫∞
−∞ k(x)<∞

−
(
BT
T

)2 1

BT

T−1∑
j=−T+1

|j|
BT

k

(
j

BT

)
︸ ︷︷ ︸

→
∫∞
−∞ |x|k(x)|<∞

= o(1),

since BT →∞ such that BT /T → 0. By Assumption 1, k ((τ1 − τ2)/b)→ 0 for almost all τ1 and
τ2, and this enables us to apply the dominated convergence theorem and obtain∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2 =

∫ 1

0

∫ 1

0
k

(
τ1 − τ2

b

)
dτ1dτ2

= o(1).

Similarly, for part (b), we have

sup
1≤t≤T

1

T

T∑
τ=1

Qh

(
t

T
,
τ

T

)
−
∫ 1

0
Qh

(
t

T
, τ2

)
dτ2

= sup
1≤t≤T

{
1

T

T∑
τ=1

k

(
t− τ
BT

)
−
∫ 1

0
k

(
t/T − τ2

b

)
dτ2

}

≤ sup
1≤t≤T

(
BT
T
× 1

BT

T∑
τ=1

k

(
t− τ
BT

))
+ sup

1≤t≤T

∣∣∣∣∫ 1

0
k

(
t/T − τ2

b

)
dτ2

∣∣∣∣
≤ BT

T
× 1

BT

∞∑
j=−∞

∣∣∣∣k( j

BT

)∣∣∣∣+

∫ 1

0
sup

0≤τ1≤1

∣∣∣∣k(τ1 − τ2

b

)∣∣∣∣ dτ2 (B.9)

= o(1),

because the first term on the right-hand side of the first equality (B.9) is O(BT /T ) = o(1). Also,
Assumption 1 implies that sup0≤τ1≤1 |k ((τ1 − τ2)/b)| → 0 for almost all τ2, and this enables us
to apply the dominated convergence theorem to get the second term on the right-hand side of
the first equality in (B.9) to be o(1) when b = BT /T → 0.
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For part (c),

sup
1≤τ≤T

1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)

= sup
1≤τ≤T

{
1

T

T∑
t=1

k

(
t− τ
BT

)
−
∫ 1

0
k

(
τ1 − τ/T

b

)
dτ1 −

1

T

T∑
t=1

∫ 1

0
k

(
t/T − τ2

b

)
dτ2

+

∫ 1

0

∫ 1

0
k

(
τ1 − τ2

b

)
dτ1dτ2

}
= sup

1≤τ≤T

{
1

T

T∑
t=1

k

(
t− τ
BT

)
−
∫ 1

0
k

(
τ1 − τ/T

b

)
dτ1

}
+ o(1)

= o(1),

where the last equality follows from the proof of part (b).
Next, we consider the case of the OS-LRV with Qh(r, s) = K−1

∑K
j=1 Φj(r)Φj(s) and K →∞

such that K/T → 0. Then the result of part (a) follows from

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh(
τ1

T
,
τ2

T
)−

∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2

=
1

T 2

T∑
τ1=1

T∑
τ2=1

 1

K

K∑
j=1

Φj

(τ1

T

)
Φj

(τ2

T

)− 1

K

K∑
j=1

(∫ 1

0
Φj(τ1)dτ1

)(∫ 1

0
Φj(τ2)dτ2

)

=
1

K

K∑
j=1

(
1

T

T∑
τ1=1

Φj

(τ1

T

))( 1

T

T∑
τ2=1

Φj

(τ2

T

))

=
1

K

K∑
j=1

(∫ 1

0
Φj (τ1) dτ1 +O

(
1

T

))(∫ 1

0
Φj (τ2) dτ2 +O

(
1

T

))

= O

(
1

T 2

)
= o(1),
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since
∫ 1

0 Φj (τ) dτ = 0 by Assumption 1. Part (b) follows in a similar manner using Assumption
1, since

sup
1≤t≤T

{
1

T

T∑
τ=1

Qh

(
t

T
,
τ

T

)
−
∫ 1

0
Qh

(
t

T
, τ2

)
dτ2

}

= sup
1≤t≤T

 1

T

T∑
τ=1

1

K

K∑
j=1

Φj

(
t

T

)
Φj

( τ
T

)
−
∫ 1

0

1

K

K∑
j=1

Φj

(
t

T

)
Φj (τ2) dτ2


= sup

1≤t≤T


1

K

K∑
j=1

Φj

(
t

T

)(
1

T

T∑
τ=1

Φj

( τ
T

))
− 1

K

K∑
j=1

Φj

(
t

T

)∫ 1

0
Φj (τ2) dτ2︸ ︷︷ ︸

=0


=

 sup
1≤t≤T

1

K

K∑
j=1

Φj

(
t

T

)
(∫ 1

0
Φj(r)dr +O

(
1

T

))

= O

(
1

T

)
= o(1).

Lastly, because
∫ 1

0 Φj (τ) dτ = 0, it is straightforward to check that Q∗h
(
t
T ,

τ
T

)
= Qh

(
t
T ,

τ
T

)
.

Therefore,

sup
1≤τ≤T

1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
=

1

T

T∑
t=1

 1

K

K∑
j=1

Φj

(
t

T

)
sup

1≤τ≤T
Φj

( τ
T

)
=

1

K

K∑
j=1

(
1

T

T∑
t=1

Φj

(
t

T

))
sup

1≤τ≤T
Φj

( τ
T

)
= O

(
1

T

)
= o(1).

Lemma B.2 Let us define

Υ∗j (θ) =
1

T

T∑
t=1

T∑
s=1

Q∗h

(
t

T
,
s

T

)
gj(vt, θ)f(vs, θ)

′.

Under Assumptions 1—5, for any θ̂ = θ0 +Op(1/
√
T ), we have that

Υj(θ̂) = Υ∗j (θ̂) + op(1)

when h is fixed as T →∞, or when (h, T )→∞ such that h/T → 0.
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Proof of Lemma B.2. For each j ∈ {1, . . . , d}, we have that∥∥∥Υ∗j (θ̂)−Υj(θ̂)
∥∥∥ (B.10)

=

∥∥∥∥∥
[

1

T

T∑
t=1

T∑
s=1

eT (s)gj(vt, θ̂)f(vs, θ̂)
′

]
+

[
1

T

T∑
t=1

T∑
s=1

eT (t)gj(vt, θ̂)f(vs, θ̂)
′

]

−
[

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh

(τ1

T
,
τ2

T

)
−
∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2

][
1

T

T∑
t=1

T∑
s=1

gj(vt, θ̂)f(vs, θ̂)
′

]∥∥∥∥∥
≤
∥∥∥∥∥ 1√

T

T∑
t=1

gj(vt, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=A

∥∥∥∥∥ 1√
T

T∑
s=1

eT (s)f(vs, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=B

+

∥∥∥∥∥ 1√
T

T∑
s=1

f(vs, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=C

∥∥∥∥∥ 1√
T

T∑
t=1

eT (t)gj(vt, θ̂)

∥∥∥∥∥︸ ︷︷ ︸
:=D

+

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)
−
∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2

∣∣∣∣∣
∥∥∥∥∥ 1√

T

T∑
t=1

gj(vt, θ̂)

∥∥∥∥∥
∥∥∥∥∥ 1√

T

T∑
s=1

f(vs, θ̂)
′

∥∥∥∥∥ ,
where

eT (t) =
1

T

T∑
τ=1

Qh

(
t

T
,
τ

T

)
−
∫ 1

0
Qh

(
t

T
, τ2

)
dτ2.

We first consider the case that h is fixed where T → ∞. Note that by Assumption 1, eT (t) =
O(1/T ) = o(1) uniformly over t for fixed h. From the proof of Lemma 1-(a) in Sun (2014), we
obtain

1

T 2

T∑
t=1

T∑
s=1

Qh

(
t

T
,
s

T

)
−
∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2 = O

(
1

T

)
,

and

B = Op

(
1

T

)
and C = Op (1) , (B.11)

as T → ∞ such that h is fixed. For each j ∈ {1, . . . , d}, we apply the mean value theorem to
term A (above) and obtain

1√
T

T∑
t=1

gj(vt, θ̆T ) =
1√
T

T∑
t=1

gj(vt, θ0) +HT,j(θ̄
∗
T,j)
√
T (θ̆T − θ0) = Op(1) (B.12)

for some θ̄∗T,j which is between θ̂ and θ0. For term D (above),

1√
T

T∑
t=1

eT (t)gj(vt, θ̂) =
1√
T

T∑
t=1

eT (t)gj(vt, θ0) +
1

T

T∑
t=1

eT (t)
∂gj(vt, θ̄

∗
T,j)

∂θ′

√
T (θ̂ − θ0)

=
1√
T

T∑
t=1

eT (t)gj(vt, θ0) +
1

T

T−1∑
t=1

[eT (t)− eT (t+ 1)]×Ht,j(θ̄
∗
T,j)
√
T (θ̂ − θ0)

(B.13)

+ eT (T )HT,j(θ̄
∗
T,j)
√
T (θ̂ − θ0),
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where the second equality follows from summation by parts. For the last term on the right-hand
side of the second equality in (B.13),

eT (T )HT,j(θ̄
∗
T,j)
√
T (θ̂ − θ0) = Op

(
1

T

)
by Assumptions 1 and 4. For any m-dimensional vector a,

E

( 1√
T

T∑
t=1

eT (t)a′gj(vt, θ0)

)2


=
1

T

T∑
s=1

T∑
t=1

eT (t)a′E
[
gj(vt, θ0)gj(vs, θ0)′

]
aeT (s)

≤
(

sup
1≤t≤T

eT (t)

)2
1

T

T∑
s=1

T∑
t=1

a′E
[
gj(vt, θ0)gj(vs, θ0)′

]
a

≤ O
(

1

T 2

) ∞∑
i=−∞

|a′Ψj,ia| ≤ O
(

1

T 2

)
||a||2

∞∑
i=−∞

||Ψj,i|| = O

(
1

T 2

)
by Assumption 5. Together with Markov’s inequality, this leads us to get

1√
T

T∑
t=1

eT (t)gj(vt, θ0) = Op

(
1

T

)
.

Let us define εj,t = Ht,j(θ̄
∗
T,j) − (t/T )Hj for each j ∈ {1, . . . , d}. By Assumption 4, εj,t satisfies

sup1≤t≤T ||εj,t|| = op(1). The second term on the right-hand side of the second equality in (B.13)
can be written as

1

T

T−1∑
t=1

[eT (t)− eT (t+ 1)]Ht,j(θ̄
∗
T,j)
√
T (θ̂ − θ0)

=
1

T

T−1∑
t=1

[eT (t)− eT (t+ 1)]εj,t
√
T (θ̂ − θ) +

1

T

T−1∑
t=1

[eT (t)− eT (t+ 1)]

(
t

T

)
Hj

√
T (θ̂ − θ0)

=
1

T

T−1∑
t=1

[eT (t)− eT (t+ 1)]εj,t
√
T (θ̂ − θ) +

1

T 2

T−1∑
t=1

eT (t)Hj

√
T (θ̂ − θ0)− eT (T )

T
Hj

√
T (θ̂ − θ0)

= Op

(
1

T

)
,

where the last equality follows from
√
T (θ̂−θ) = Op(1), sup1≤t≤T εj,t = op(1), and sup1≤t≤T eT (t) =

O(1/T ), which leads us to D = Op (1/T ) . Incorporating this, together with (B.11) and (B.12),
into (B.10), we obtain

Υj(θ̂) = Υ∗j (θ̂) +Op

(
1

T

)
= Υ∗j (θ̂) + op (1) , (B.14)
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which is the desired result.
Now we consider the case when (h, T ) → ∞ such that h/T → 0. Using parts (a) and (b) in

Lemma B.1, we obtain

1

T 2

T∑
τ1=1

T∑
τ2=1

Qh

(τ1

T
,
τ2

T

)
−
∫ 1

0

∫ 1

0
Qh(τ1, τ2)dτ1dτ2 = o(1) (B.15)

sup
1≤t≤T

eT (t) = o(1) (B.16)

when (h, T )→∞ such that h/T → 0. Note that, compared to the case when h is fixed, the order
of the convergence on the right-hand sides of (B.15) and (B.16) becomes o(1) instead of O(1/T ).
Using (B.15), one can show that the last term in (B.10) is op(1) when (h, T ) → ∞ such that
h/T → 0. Also, a careful inspection of the proof when h is fixed as T →∞ indicates (B.16) leads
to the conclusion that

A = Op(1) and D = op(1)

hold when h → ∞ such that h/T → 0. Similarly, we can prove that B = op (1) and C = Op (1)
also hold when h → ∞ such that h/T → 0. Incorporating these results into (B.10), we can
conclude that Υj(θ̂) = Υ∗j (θ̂) + op (1) also holds when (h, T )→∞ such that h/T → 0.

Lemma B.3 For a generic sequence of matrices {Ct}, define S0(C) = 0 and St(C) = T−1
∑t

s=1Cs
for t ∈ {0, 1, . . . , T}. Then for any two sequences of matrices {At} and {Bt},

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ

=
T−1∑
τ=1

T−1∑
t=1

5Q∗h
(
t

T
,
τ

T

)
St(A)S ′τ (B) +

T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
St(A)ST (B)′

+
T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
ST (A)S ′τ (B) +Q∗h (1, 1)ST (A)S ′T (B),

where

5Q∗h
(
t

T
,
τ

T

)
:= Q∗h

(
t

T
,
τ

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ + 1

T

)
+Q∗h

(
t+ 1

T
,
τ + 1

T

)
.

Proof of Lemma B.3. We use the formula for summation by parts:

1

T

T∑
t=1

atb
′
t =

1

T
aTC

′
T −

1

T

T−1∑
t=1

(at+1 − at)C ′t, where Ct =
t∑

s=1

bs (B.17)

for any conformable vectors at and bt. Consider

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ =

1

T

T∑
τ=1

(
1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
At

)
B′τ . (B.18)

We first apply the formula in (B.17) to the expression inside the parentheses by setting at =
Q∗h(t/T, τ/T ), bt = At, and Ct =

∑t
s=1As. Then

1

T

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
At = Q∗h

(
1,
τ

T

)( 1

T

T∑
s=1

As

)
−
T−1∑
t=1

(
1

T

T∑
s=1

As

)[
Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ

T

)]
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for each τ ∈ {1, . . . , T}. Incorporating this into (B.18), we have

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ

=
1

T

T∑
τ=1

Q∗h

(
1,
τ

T

)
ST (A)B′τ −

T−1∑
t=1

St(A)

[
1

T

T∑
τ=1

{
Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ

T

)}
B′τ

]
.

(B.19)

We repeatedly apply the formula in (B.17) to the terms on the right-hand side. For the first
term, setting aτ = Q∗h

(
1, τT

)
ST (A), bτ = B′τ , and Cτ =

∑τ
s=1B

′
s, we obtain

1

T

T∑
τ=1

Q∗h

(
1,
τ

T

)
ST (A)B′τ

= Q∗h (1, 1)ST (A)ST (B)′ −
T−1∑
τ=1

Q∗h

(
1,
τ + 1

T

)
−Q∗h

(
1,
τ

T

)
ST (A)Sτ (B)′

Inside the braces in the second term, setting aτ = Q∗h
(
t+1
T , τT

)
− Q∗h

(
t
T ,

τ
T

)
, bτ = B′τ , and

Cτ =
∑τ

s=1B
′
s, we get

1

T

T∑
τ=1

{
Q∗h

(
t+ 1

T
,
τ

T

)
−Q∗h

(
t

T
,
τ

T

)}
B′τ

=

[
Q∗h

(
t+ 1

T
, 1

)
−Q∗h

(
t

T
, 1

)]
ST (B)′ −

T−1∑
τ=1

[
Q∗h

(
t+ 1

T
,
τ + 1

T

)
−Q∗h

(
t

T
,
τ + 1

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)
+Q∗h

(
t

T
,
τ

T

)]
Sτ (B)′.

Incorporating these results into (B.19), we obtain

1

T 2

T∑
τ=1

T∑
t=1

Q∗h

(
t

T
,
τ

T

)
AtB

′
τ

= Q∗h (1, 1)ST (A)ST (B)′ −
T−1∑
τ=1

[
Q∗h

(
1,
τ + 1

T

)
−Q∗h

(
1,
τ

T

)]
ST (A)Sτ (B)′

−
T−1∑
t=1

St(A)

[
Q∗h

(
t+ 1

T
, 1

)
−Q∗h

(
t

T
, 1

)]
ST (B)′ +

T−1∑
t=1

St(A)

T−1∑
τ=1

[
Q∗h

(
t+ 1

T
,
τ + 1

T

)
−Q∗h

(
t

T
,
τ + 1

T

)
−Q∗h

(
t+ 1

T
,
τ

T

)
+Q∗h

(
t

T
,
τ

T

)]
Sτ (B)′

=

T−1∑
t=1

T−1∑
τ=1

5Q∗h
(
t

T
,
τ

T

)
St(A)Sτ (B)′ +

T−1∑
t=1

[
Q∗h

(
t

T
, 1

)
−Q∗h

(
t+ 1

T
, 1

)]
St(A)ST (B)′

+

T−1∑
τ=1

[
Q∗h

(
1,
τ

T

)
−Q∗h

(
1,
τ + 1

T

)]
ST (A)Sτ (B)′ +Q∗h (1, 1)ST (A)ST (B)′,

as desired.
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Lemma B.4 Let Assumptions 1—3 hold with θ̂CU. Then the CU-FOC function Qθ,ST (θ) satisfies

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

=
∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

+ op (1) ,

where θ∗T is located between θ0 and θ̂CU.

Proof of Lemma B.4. We start by showing that ∂Q(θ, ST (θ))/∂θ′ coincides with the definition
of Ã1(θ, ST (θ)). We have that

∂Q(θ, ST (θ))

∂θ′
=

∂

∂θ

(
fT (θ)′S−1

T (θ)G̃T (θ)
)

= G′TS
−1
T (θ)G̃T (θ)−


fT (θ)′S−1

T (θ)∂ST (θ)
∂θ1

...
fT (θ)′S−1

T (θ)∂ST (θ)
∂θd

S−1
T (θ)G̃T (θ)

+


fT (θ)′S−1

T (θ)∂G̃T (θ)
∂θ1

...

fT (θ)′S−1
T (θ)∂G̃T (θ)

∂θd

 .
The right-hand side of the last equality can be re-written asG′T (θ)−

 fT (θ)′S−1
T (θ) (Υ1(θ) + Υ′1(θ))

...
fT (θ)′S−1

T (θ) (Υd(θ) + Υ′d(θ))


S−1

T (θ)G̃T (θ)

+


fT (θ)′S−1

T (θ)
{
∂G̃T (θ)
∂θ1

−Υ1(θ)S−1
T (θ)

[
G̃T (θ)

]}
...

fT (θ)′S−1
T (θ)

{
∂G̃T (θ)
∂θd

−Υd(θ)S
−1
T (θ)

[
G̃T (θ)

]}


=
[
G̃T (θ0)

]′
S−1
T (θ0)

[
G̃T (θ0)

]
+ {Id ⊗

(
fT (θ0)′S−1

T (θ0)
)
}H̃(θ0)

= Ã1(θ, ST (θ)).

For each i ∈ {1, . . . , d}, we have that

∂G̃T (θ)

∂θi
=

∂

∂θi

(
GT −Υ′(θ)

{
Id ⊗

(
S−1
T (θ)fT (θ)

)})
= − ∂

∂θi

[
Υ′1(θ)S−1

T (θ)fT (θ), · · · ,Υ′d(θ)S
−1
T (θ)fT (θ)

]
.

For any (i, j) ∈ {1, . . . , d} × {1, . . . , d}, we have that

− ∂

∂θi

(
Υ′j(θ)S

−1
T (θ)fT (θ)

)
= −

(
∂

∂θi
Υj(θ)

)′
S−1
T (θ)fT (θ) + Υ′j(θ)S

−1
T (θ)

(
∂

∂θi
ST (θ)

)
S−1
T (θ)fT (θ)

−Υ′j(θ)S
−1
T (θ)

(
∂

∂θi
fT (θ)

)
,
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and using the linearity of f(vt, θ) in θ, we obtain

∂

∂θi
Υj(θ) =

∂

∂θi

 1

K

K∑
k=1

(
1√
T

T∑
t=1

φk

(
t

T

)
∂f(vt, θ)

∂θj

)(
1√
T

T∑
s=1

φk

( s
T

)
f(vs, θ)

)′
=

1

K

K∑
k=1

(
1√
T

T∑
t=1

φk

(
t

T

)
∂f(vt, θ)

∂θj

)(
1√
T

T∑
s=1

φk

( s
T

) ∂f(vt, θ)

∂θi

)′
:= Υ

(2)
ji ,

where, because of the linearity of the moment process, Υ
(2)
ji does not depend on θ. We have that

− ∂

∂θi

(
Υ′j(θ)S

−1
T (θ)fT (θ)

)
= −

(
∂

∂θi
Υj(θ)

)′
S−1
T (θ)fT (θ) + Υ′j(θ)S

−1
T (θ)

(
∂

∂θi
ST (θ)

)
S−1
T (θ)fT (θ)

−Υ′j(θ)S
−1
T (θ)

(
∂

∂θi
fT (θ)

)
= −

[
Υ

(2)
ji

]′
S−1
T (θ)fT (θ) + Υ′j(θ)S

−1
T (θ)

(
Υi(θ) + Υi(θ)

′)S−1
T (θ)fT (θ)

−Υ′j(θ)S
−1
T (θ)GiT ,

and thus

∂G̃T (θ)

∂θj
= − ∂

∂θj

[
Υ′1(θ)S−1

T (θ)fT (θ), · · · ,Υ′d(θ)S
−1
T (θ)fT (θ)

]
= −

[
Υ

(2)′
1j S

−1
T (θ)fT (θ), · · · ,Υ

(2)′
dj S

−1
T (θ)fT (θ)

]
+
[

Υ′1(θ)S−1
T (θ) (Υj(θ) + Υj(θ)

′)S−1
T (θ)fT (θ), · · · ,Υ′d(θ)S

−1
T (θ) (Υj(θ) + Υj(θ)

′)S−1
T (θ)fT (θ)

]
−
[

Υ′1(θ)S−1
T (θ)GjT , · · · ,Υ′d(θ)S

−1
T (θ)GjT

]
:= G̃

(a)
j,2 (θ) + G̃

(b)
j,2(θ) + G̃

(c)
j,2(θ),

as desired. For ∂2Q(θ, ST (θ))/∂θj∂θ
′ with j ∈ {1, . . . , d}, we have that

∂2Q(θ, ST (θ))

∂θj∂θ′
= Aj(θ) +Bj(θ) + Cj(θ),

where

Aj(θ) =
∂

∂θj

(
G̃′T (θ)S−1

T (θ)G̃T (θ)
)
,

Bj(θ) =
∂

∂θj


fT (θ)′S−1

T (θ)∂G̃T (θ)
∂θ1

...

fT (θ)′S−1
T (θ)∂G̃T (θ)

∂θd

 ,

Cj(θ) = − ∂

∂θj


fT (θ)′S−1

T (θ)Υ1(θ)S−1
T (θ)

[
G̃T (θ)

]
...

fT (θ)′S−1
T (θ)Υd(θ)S

−1
T (θ)

[
G̃T (θ)

]
 .
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For Aj(θ), it is straightforward to obtain

Aj(θ) =

(
∂

∂θj
G̃′T (θ)

)
S−1
T (θ)G̃T (θ)− G̃′T (θ)S−1

T (θ)
∂ST (θ)

∂θj
S−1
T (θ)G̃T (θ)

+ [G̃T (θ)]′S−1
T (θ)

(
∂

∂θj
G̃T (θ)

)
=
(
G̃

(a)
j,2 (θ) + G̃

(b)
j,2(θ) + G̃

(c)
j,2(θ)

)′
S−1
T (θ)G̃T (θ)

− G̃′T (θ)S−1
T (θ)

(
Υj(θ) + Υj(θ)

′)S−1
T (θ)G̃T (θ)

+ [G̃T (θ)]′S−1
T (θ)

(
G̃

(a)
j,2 (θ) + G̃

(b)
j,2(θ) + G̃

(c)
j,2(θ)

)
.

For Bj(θ), its i-th row is expressed as

∂

∂θj

(
fT (θ)′S−1

T (θ)
∂G̃T (θ)

∂θi

)

=

(
∂

∂θj
fT (θ)′

)
S−1
T (θ)

∂G̃T (θ)

∂θi
− fT (θ)′S−1

T (θ)
∂ST (θ)

∂θj
S−1
T (θ)

∂G̃T (θ)

∂θi

+ fT (θ)′S−1
T (θ)

∂2G̃T (θ)

∂θj∂θi

= G′jTS
−1
T (θ)

(
G̃

(a)
i,2 (θ) + G̃

(b)
i,2(θ) + G̃

(c)
i,2 (θ)

)
− fT (θ)′S−1

T (θ)
(
Υj(θ) + Υj(θ)

′)S−1
T (θ)

(
G̃

(a)
i,2 (θ) + G̃

(b)
i,2(θ) + G̃

(c)
i,2 (θ)

)
+ fT (θ)′S−1

T (θ)

(
∂G̃

(a)
i,2 (θ)

∂θj
+
∂G̃

(b)
i,2(θ)

∂θj
+
∂G̃

(c)
i,2 (θ)

∂θj

)
.

Lastly, the i-th row of Cj(θ) is expressed as

∂

∂θj

(
fT (θ)′S−1

T (θ)Υi(θ)S
−1
T (θ)

[
G̃T (θ)

])
= G′jTS

−1
T (θ)Υi(θ)S

−1
T (θ)

[
G̃T (θ)

]
− fT (θ)′S−1

T (θ)
∂ST (θ)

∂θj
S−1
T (θ)Υi(θ)S

−1
T (θ)

[
G̃T (θ)

]
+ fT (θ)′S−1

T (θ)Υ
(2)
ij S

−1
T (θ)

[
G̃T (θ)

]
− fT (θ)′S−1

T (θ)Υi(θ)S
−1
T (θ)

∂ST (θ)

∂θj
S−1
T (θ)

[
G̃T (θ)

]
+ fT (θ)′S−1

T (θ)Υi(θ)S
−1
T (θ)

(
∂G̃

(a)
i,2 (θ)

∂θj
+
∂G̃

(b)
i,2(θ)

∂θj
+
∂G̃

(c)
i,2 (θ)

∂θj

)
.
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From the proof of Lemma 1, it is straightforward to show that

fT (θ∗T ) = fT (θ0) + op(1),

ST (θ∗T ) = ST (θ0) + op(1),

Υi(θ
∗
T ) = Υi(θ0) + op(1),

G̃
(k)
j,2 (θ∗T ) = G̃

(k)
j,2 (θ0) + op(1)

for any θ∗T = θ0 + Op(T
−1/2), k ∈ {a, b, c, }, and j ∈ {1, . . . , d}. Similarly, it is not diffi cult to

check that
∂G̃

(k)
i,2 (θ)

∂θj

∣∣∣∣∣
θ=θ∗T

=
∂G̃

(k)
i,2 (θ)

∂θj

∣∣∣∣∣
θ=θ0

+ op(1) for k ∈ {a, b, c}.

Therefore, we have that

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

= Aj(θ0) +Bj(θ0) + Cj(θ0) + op(1)

=
∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

+ op(1),

as desired.
Proof of Theorem 4. From the second-order Taylor expansion of the FOC, we have that

0 = Q(θ̂CU, ST (θ̂CU)) = G̃T (θ̂CU)
[
ST (θ̂CU)

]−1
fT (θ̂CU)

= G̃T (θ0) [ST (θ0)]−1 fT (θ0) +

(
∂Qθ,ST (θ)

∂θ′

)∣∣∣∣
θ=θ0

(
θ̂CU − θ0

)
+

1

2

d∑
j=1

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

(
θ̂CU,j − θ0,j

)(
θ̂CU − θ0

)
= G̃T (θ0) [ST (θ0)]−1 fT (θ0)

+


(
∂Q(θ, ST (θ))

∂θ′

)∣∣∣∣
θ=θ0

+
1

2

d∑
j=1

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

(
θ̂CU,j − θ0,j

)(θ̂CU − θ0

)
,

where each component of θ∗T is located between the corresponding components θ0 and θ̂CU. By
Assumption (6), we obtain

θ̂CU,j − θ0,j = e′j
[
G′TS

−1
T (θ0)GT

]−1
G′TS

−1
T (θ0)fT (θ0)︸ ︷︷ ︸

=ψj(θ0,ST (θ0))

+ op

(
1

T

)
,

where the first term on the right-hand side is Op(T−1/2). Lemma B.4 provides that

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

=
∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

+ op(1).
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Therefore, we have that

1

2

d∑
j=1

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

(
θ̂CU,j − θ0,j

)(
θ̂CU − θ0

)

=
1

2

d∑
j=1

(
∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

+ op(1)

)
×
(
ψj(θ0, ST (θ0)) + op

(
1

T

))(
θ̂CU − θ0

)

=
1

2

d∑
j=1

(
∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

)
ψj(θ0, ST (θ0))

(
θ̂CU − θ0

)
+ op

(
1

T

)
.

Combining these results into the second-order Taylor expansion of the FOC, we obtain

0 = Q
(
θ̂CU, ST (θ̂CU)

)
= G̃T (θ̂CU)

[
ST (θ̂CU)

]−1
fT (θ̂CU)

= G̃T (θ0) [ST (θ0)]−1 fT (θ0)

+

(
∂Q(θ, ST (θ))

∂θ′

)∣∣∣∣
θ=θ0

(
θ̂CU − θ0

)
+

1

2

d∑
j=1

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

(
θ̂CU,j − θ0,j

)(
θ̂CU − θ0

)
= G̃T (θ0) [ST (θ0)]−1 fT (θ0)

+


(
∂Q(θ, ST (θ))

∂θ′

)∣∣∣∣
θ=θ0

+
1

2

d∑
j=1

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ∗T

(
θ̂CU,j − θ0,j

)(θ̂CU − θ0

)
= G̃T (θ0) [ST (θ0)]−1 fT (θ0)

+


(
∂Q(θ, ST (θ))

∂θ′

)∣∣∣∣
θ=θ0

+
1

2

d∑
j=1

∂2Q(θ, ST (θ))

∂θj∂θ′

∣∣∣∣
θ=θ0

ψj(θ0, ST (θ0))︸ ︷︷ ︸
=Ã(θ0,ST (θ0))


(
θ̂CU − θ0

)
+ op

(
1

T

)
,

which leads to the desired result,

√
T
(
θ̂CU − θ0

)
= −

[
Ã(θ0, ST (θ0))

]−1
G̃T (θ0) [ST (θ0)]−1

√
TfT (θ0) + op

(
1√
T

)
.
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