Professor Kao Publishes High Dimensional Econometrics and Identification

High Dimensional Econometrics and Identification, by Professor Chihwa Kao and co-author Long Liu, will be coming out in May.

From the Publisher:

In many applications of econometrics and economics, a large proportion of the questions of interest are identification. An economist may be interested in uncovering the true signal when the data could be very noisy, such as time-series spurious regression and weak instruments problems, to name a few. In this book, High Dimensional Econometrics and Identification, we illustrate the true signal and, hence, identification can be recovered even with noisy data in high-dimensional data, e.g., large panels. High-dimensional data in econometrics is the rule rather than the exception. One of the tools to analyze large, high-dimensional data is the panel data model.

High Dimensional Econometrics and Identification grew out of research work on the identification and high-dimensional econometrics that we have collaborated on over the years, and it aims to provide an up-to-date presentation of the issues of identification and high-dimensional econometrics, as well as insights into the use of these results in empirical studies. This book is designed for high-level graduate courses in econometrics and statistics, as well as used as a reference for researchers.

Contents:

  • Preface
  • Panel Data Model with Stationary and Nonstationary Regressors and Error Terms
  • Panel Time Trend Model with Stationary and Nonstationary Error Terms
  • Estimation of Change Points in Stationary and Nonstationary Regressors and Error Term
  • Weak Instruments in Panel Data Models
  • Incidental Parameters Problem in Panel Data Models
  • Bibliography
  • Index

Readership: Graduate and researchers in the field of econometrics and economics. 

https://www.worldscientific.com/worldscibooks/10.1142/11273