Choi

Professor Sung Hoon Choi to be published in Econometric Theory

Professor Sung Hoon Choi’s recent article titled “Large Global Volatility Matrix Analysis Based on Observation Structural Information” has been accepted for publication in Econometric Theory, one of the leading scholarly journals in theoretical econometrics.

Abstract

In this paper, we develop a novel large volatility matrix estimation procedure for analyzing global financial markets. Practitioners often use lower-frequency data, such as weekly or monthly returns, to address the issue of different trading hours in the international financial market. However, this approach can lead to inefficiency due to information loss. To mitigate this problem, our proposed method, called Structured Principal Orthogonal complEment Thresholding (Structured-POET), incorporates observation structural information for both global and national factor models. We establish the asymptotic properties of the Structured-POET estimator, and also demonstrate the drawbacks of conventional covariance matrix estimation procedures when using lower-frequency data. Finally, we apply the Structured-POET estimator to an out-of-sample portfolio allocation study using international stock market data.

Professor Sung Hoon Choi to be published in Journal of Econometrics

Professor Sung Hoon Choi’s recent article titled “Large volatility matrix analysis using global and national factor models” has been accepted for publication in the Journal of Econometrics, one of the leading scholarly journals in theoretical econometrics.

Abstract

Several large volatility matrix inference procedures have been developed, based on the latent factor model. They often assumed that there are a few of common factors, which can account for volatility dynamics. However, several studies have demonstrated the presence of local factors. In particular, when analyzing the global stock market, we often observe that nation-specific factors explain their own country’s volatility dynamics. To account for this, we propose the Double Principal Orthogonal complEment Thresholding (Double-POET) method, based on multi-level factor models, and also establish its asymptotic properties. Furthermore, we demonstrate the drawback of using the regular principal orthogonal component thresholding (POET) when the local factor structure exists. We also describe the blessing of dimensionality using Double-POET for local covariance matrix estimation. Finally, we investigate the performance of the Double-POET estimator in an out-of-sample portfolio allocation study using international stocks from 20 financial markets.